International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 22 January 2024

Sofía Celi, Alex Davidson
ePrint Report ePrint Report
We introduce $\mathsf{ChalametPIR}$: a single-server Private Information Retrieval (PIR) scheme supporting fast, low-bandwidth keyword queries, with a conceptually very simple design. In particular, we develop a generic framework for converting PIR schemes for index queries over flat arrays (based on the Learning With Errors problem) into keyword PIR. This involves representing a key-value map using any probabilistic filter that permits reconstruction of elements from inclusion queries (e.g. Cuckoo filters). In particular, we make use of recently developed Binary Fuse filters to construct $\mathsf{ChalametPIR}$, with minimal efficiency blow-up compared with state-of-the-art index-based schemes (all costs bounded by a factor of \(\leq 1.08\)). Furthermore, we show that $\mathsf{ChalametPIR}$ achieves runtimes and financial costs that are factors of between \(6\times\)-\(11\times\) and \(3.75\times\)-\(11.4\times\) more efficient, respectively, than state-of-the-art keyword PIR approaches, for varying database configurations. Bandwidth costs are additionally reduced or remain competitive, depending on the configuration. Finally, we believe that our application of Binary Fuse filters in the cryptography setting may bring immediate independent value towards developing efficient variants of other related primitives that benefit from using such filters.
Expand

Additional news items may be found on the IACR news page.