International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 26 January 2024

Sanjam Garg, Mohammad Hajiabadi, Peihan Miao, Alice Murphy
ePrint Report ePrint Report
Laconic cryptography enables secure two-party computation (2PC) on unbalanced inputs with asymptotically-optimal communication in just two rounds of communication. In particular, the receiver (who sends the first-round message) holds a long input and the sender (who sends the second-round message) holds a short input, and the size of their communication to securely compute a function on their joint inputs only grows with the size of the sender's input and is independent of the receiver's input size. The work on laconic oblivious transfer (OT) [Cho et al. CRYPTO 2017] and laconic private set intersection (PSI) [Alamati et al. TCC 2021] shows how to achieve secure laconic computation for OT and PSI from the Diffie-Hellman assumption.

In this work, we push the limits further and achieve laconic branching programs from the Diffie-Hellman assumption. In particular, the receiver holds a large branching program $P$ and the sender holds a short input $x$. We present a two-round 2PC protocol that allows the receiver to learn $x$ iff $P(x) =1$, and nothing else. The communication only grows with the size of $x$ and the depth of $P$, and does not further depend on the size of $P$.
Expand

Additional news items may be found on the IACR news page.