International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 06 February 2024

Hanwen Feng, Zhenliang Lu, Qiang Tang
ePrint Report ePrint Report
There are long line of researches on the fundamental distributed key generation (DKG) protocols. Unfortunately, all of them suffer from a large cubic total communication, due to the fact that $O(n)$ participants need to {\em broadcast} to all $n$ participants.

We introduce the first two DKG protocols, both achieving optimal resilience, with sub-cubic total communication and computation. The first DKG generates a secret key within an Elliptic Curve group, incurring $\widetilde{\mathcal{O}}(n^{2.5}\lambda)$ total communication and computation. The second DKG, while slightly increasing communication and computation by a factor of the statistical security parameter, generates a secret key as a field element. This property makes it directly compatible with various off-the-shelf DLog-based threshold cryptographic systems. Additionally, both DKG protocols straightforwardly imply an improved (single-shot) common coin protocol.

At the core of our techniques, we develop a simple-yet-effective methodology via deterministic sharding that arbitrarily groups nodes into shards; and a new primitive called consortium-dealer secret sharing, to enable a shard of nodes to securely contribute a secret to the whole population only at the cost of one-dealer. We also formalize simulation-based security for publicly verifiable secret sharing (PVSS), making it possible for a modular analysis for DKG. Those might be of independent interest.
Expand

Additional news items may be found on the IACR news page.