IACR News item: 09 February 2024
Daniel Dobkin, Nimrod Cever, Itamar Levi
ePrint Report
High-performance and energy-efficient encryption engines have become crucial components in modern System-On-Chip (SoC) architectures across multiple platforms, including servers, desktops, mobile devices, and IoT edge devices. Alas, the secure operation of cryptographic engines faces a significant obstacle caused by information leakage through various side-channels. Adversaries can exploit statistical analysis techniques on measured (e.g.,) power and timing signatures generated during (e.g.,) encryption process to extract secret material. Countermeasures against such side-channel attacks often impose substantial power, area, and performance overheads. Consequently, designing side-channel secure encryption engines becomes a critical challenge when ensuring high-performance and energy-efficient operations. In this paper we will suggest a novel technique for low cost, high impact, easily scalable protection based on Adaptive Dynamic Voltage and Frequency Scaling (A-DVFS) capabilities in ultra-low-power (ULP) sub-threshold chips. We review the improvement of using integrated voltage regulators and DVFS, normally used for efficient power management, towards increasing side-channel resistance of encryption engines; Pushing known prior-art in the topic to ULP-regime. The hardware measurements were performed on PLS15 test-chip fabricated in ULP 40nm process going down from nominal voltage to 580 mV power-supply. Various results and detailed analysis is presented to demonstrate the impact of power management circuits on side-channel security, performance-impact and comparison to prior-art. Importantly, we highlight security sensitivities DVFS embeds in terms of software side-channels such as timing, and their mitigation with our proposed technique, successfully masking the time signature introduced by DVFS.
Additional news items may be found on the IACR news page.