International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 12 February 2024

Julien Béguinot, Wei Cheng, Sylvain Guilley, Olivier Rioul
ePrint Report ePrint Report
Masking is one of the most popular countermeasures to side- channel attacks, because it can offer provable security. However, depend- ing on the adversary’s model, useful security guarantees can be hard to provide. At first, masking has been shown secure against t-threshold probing adversaries by Ishai et al. at Crypto’03. It has then been shown secure in the more generic random probing model by Duc et al. at Euro- crypt’14. Prouff and Rivain have introduced the noisy leakage model to capture more realistic leakage at Eurocrypt’13. Reduction from noisy leakage to random probing has been introduced by Duc et al. at Euro- crypt’14, and security guarantees were improved for both models by Prest et al. at Crypto’19, Duc et al. in Eurocrypt’15/J. Cryptol’19, and Masure and Standaert at Crypto’23. Unfortunately, as it turns out, we found that previous proofs in either random probing or noisy leakage models are flawed, and such flaws do not appear easy to fix. In this work, we show that the Doeblin coefficient allows one to over- come these flaws. In fact, it yields optimal reductions from noisy leakage to random probing, thereby providing a correct and usable metric to properly ground security proofs. This shows the inherent inevitable cost of a reduction from the noisy leakages to the random probing model. We show that it can also be used to derive direct formal security proofs using the subsequence decomposition of Prouff and Rivain.
Expand

Additional news items may be found on the IACR news page.