International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 16 February 2024

Mustafa Khairallah, Srinivasan Yadhunathan, Shivam Bhasin
ePrint Report ePrint Report
In this paper, we propose a leakage-resilient pseudo-random number generator (PRNG) design that leverages the rekeying techniques of the PSV-Enc encryption scheme and the superposition property of the Superposition-Tweak-Key (STK) framework. The random seed of the PRNG is divided into two parts; one part is used as an ephemeral key that changes every two calls to a tweakable block cipher (TBC), and the other part is used as a static long-term key. Using the superposition property, we show that it is possible to eliminate observable leakage by only masking the static key. Thus, our proposal itself can be seen as a superposition of masking and rekeying. We show that our observations can be used to design an unpredictable-with-leakage PRNG as long as the static key is protected, and the ephemeral key cannot be attacked with 2 traces. Our construction enjoys better theoretical security arguments than PSV-Enc; better Time-Data trade-off and leakage assumptions, using the recently popularized unpredictability with leakage. We verify our proposal by performing Test Vector Leakage Assessment (TVLA) on an STK-based TBC (\deoxys) operated with a fixed key and a dynamic random tweak. Our results show that while the protection of the static key is non-trivial, it only requires $\approx 10\%$ overhead for first-order protection in the most conservative setting, unlike traditional masking which may require significant overheads of $300\%$ or more.
Expand

Additional news items may be found on the IACR news page.