International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 19 February 2024

Jonathan Trostle
ePrint Report ePrint Report
Homomorphic encryption has been an active area of research since Gentry's breakthrough results on fully homomorphic encryption. We present secret key somewhat homomorphic schemes where client privacy is information-theoretic (server can be computationally unbounded). As the group order in our schemes gets larger, entropy approaches max- imal entropy (perfect security). Our basic scheme is additive somewhat homomorphic. In one scheme, the server handles circuit multiplication gates by returning the mulitiplicands to the client which does the multiplication and sends back the encrypted product. We give a 2-party protocol that also incorporates server inputs where the client privacy is information-theoretic. Server privacy is not information-theoretic, but rather depends on hardness of the subset sum problem. Correctness for the server in the malicious model can be verified by a 3rd party where the client and server privacy are information-theoretically protected from the verifier. Scaling the 2PC protocol via separate encryption parameters for smaller subcircuits allows the ciphertext size to grow logarithmically as circuit size grows.
Expand

Additional news items may be found on the IACR news page.