International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 27 February 2024

Yuval Ishai, Yifan Song
ePrint Report ePrint Report
A leakage-resilient circuit for $f:\{0,1\}^n\to\{0,1\}^m$ is a randomized Boolean circuit $C$ mapping a randomized encoding of an input $x$ to an encoding of $y=f(x)$, such that applying any leakage function $L\in \cal L$ to the wires of $C$ reveals essentially nothing about $x$. A leakage-tolerant circuit achieves the stronger guarantee that even when $x$ and $y$ are not protected by any encoding, the output of $L$ can be simulated by applying some $L'\in \cal L$ to $x$ and $y$ alone. Thus, $C$ is as secure as an ideal hardware implementation of $f$ with respect to leakage from $\cal L$.

Leakage-resilient circuits were constructed for low-complexity classes $\cal L$, including (length-$t$ output) $\mathcal{AC}0$ functions, parities, and functions with bounded communication complexity. In contrast, leakage-tolerant circuits were only known for the simple case of probing leakage, where $L$ outputs the values of $t$ wires in $C$.

We initiate a systematic study of leakage-tolerant circuits for natural classes $\cal L$ of global leakage functions, obtaining the following main results.

Leakage-tolerant circuits for depth-1 leakage. Every circuit $C_f$ for $f$ can be efficiently compiled into an $\cal L$-tolerant circuit $C$ for $f$, where $\cal L$ includes all leakage functions $L$ that output either $t$ parities or $t$ disjunctions (alternatively, conjunctions) of any number of wires or their negations. In the case of parities, our simulator runs in $2^{O(t)}$ time. We provide partial evidence that this may be inherent.

Application to stateful leakage-resilient circuits. Using a general transformation from leakage-tolerant circuits, we obtain the first construction of stateful $t$-leakage-resilient circuits that tolerate a continuous parity leakage, and the first such construction for disjunction/conjunction leakage in which the circuit size grows sub-quadratically with $t$. Interestingly, here we can obtain $\mathtt{poly}(t)$-time simulation even in the case of parities.
Expand

Additional news items may be found on the IACR news page.