International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 26 March 2024

Ben Fisch, Arthur Lazzaretti, Zeyu Liu, Charalampos Papamanthou
ePrint Report ePrint Report
Private Information Retrieval (PIR) is a two player protocol where the client, given some query $x \in [N]$ interacts with the server, which holds a $N$-bit string $\textsf{DB}$ in order to privately retrieve $\textsf{DB}[x]$. In this work, we focus on the single server client-preprocessing model, initially idealized by Corrigan-Gibbs and Kogan (EUROCRYPT 2020), where the client and server first run some joint preprocessing algorithm, after which the client can retrieve elements of the server's string $\textsf{DB}$ privately in time sublinear in $N$.

All known constructions of single server client-preprocessing PIR rely on one of the following two paradigms: (1) a linear-bandwidth offline phase where the client downloads the whole database from the server, or (2) a sublinear-bandwidth offline phase where however the server has to compute a large-depth ($O_\lambda (N)$) circuit under FHE in order to execute the preprocessing phase.

In this paper, we construct a single server client-preprocessing PIR scheme which achieves both sublinear offline bandwidth (the client does not have to download the whole database offline) and a low-depth (i.e. $O_\lambda(1)$), highly parallelizable preprocessing circuit. We estimate that on a single thread, our scheme's preprocessing time should be more than 350x times faster than in prior single server client-preprocessing PIR constructions. Moreover, with parallelization, the latency reduction would be even more drastic. In addition, this construction also allows for updates in $O_\lambda (1)$ time, something not achieved before in this model.
Expand

Additional news items may be found on the IACR news page.