International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 16 April 2024

Navid Alamati, Guru-Vamsi Policharla, Srinivasan Raghuraman, Peter Rindal
ePrint Report ePrint Report
We revisit the alternating moduli paradigm for constructing symmetric key primitives with a focus on constructing highly efficient protocols to evaluate them using secure multi-party computation (MPC). The alternating moduli paradigm of Boneh et al. (TCC 2018) enables the construction of various symmetric key primitives with the common characteristic that the inputs are multiplied by two linear maps over different moduli, first over $\mathbb{F}_2$ and then over $\mathbb{F}_3$.

The first contribution focuses on efficient two-party evaluation of alternating moduli PRFs, effectively building an oblivious pseudorandom function. We present a generalization of the PRF proposed by Boneh et al. (TCC 18) along with methods to lower the communication and computation. We then provide several variants of our protocols, with different computation and communication tradeoffs, for evaluating the PRF. Most are in the OT/VOLE hybrid model while one is based on specialized garbling. Our most efficient protocol effectively is about $3\times$ faster and requires $1.3\times$ lesser communication. %Moreover, our implementation is an order of magnitude faster than prior work. Our next contribution is the efficient evaluation of the OWF $f(x)=B\cdot_3 (A\cdot_2 x)$ proposed by Dinur et al. (CRYPTO 21) where $A \in \mathbb{F}^{m\times n}_2, B\in\mathbb{F}^{t\times m}_3$ and $\cdot_p$ is multiplication mod $p$. This surprisingly simple OWF can be evaluated within MPC by secret sharing $[\hspace{-3px}[x]\hspace{-3px}]$ over $\mathbb{F}_2$, locally computing $[\hspace{-3px}[v]\hspace{-3px}]=A\cdot_2 [\hspace{-3px}[x]\hspace{-3px}]$, performing a modulus switching protocol to $\mathbb{F}_3$ shares, followed by locally computing the output shares $[\hspace{-3px}[y]\hspace{-3px}]=B\cdot_3 [\hspace{-3px}[v]\hspace{-3px}]$. %While Dinur et al. used the KKW framework (CCS 2018) to construct a post quantum signature, w We design a bespoke MPC-in-the-Head (MPCitH) signature scheme that evaluates the OWF, achieving state of art performance. The resulting signature has a size ranging from 4.0-5.5 KB, achieving between $2\text{-}3\times$ reduction compared to Dinur et al. To the best of our knowledge, this is only $\approx 5\%$ larger than the smallest signature based on symmetric key primitives, including the latest NIST PQC competition submissions. We additionally show that our core techniques can be extended to build very small post-quantum ring signatures for small-medium sized rings that are competitive with state-of-the-art lattice based schemes. Our techniques are in fact more generally applicable to set membership in MPCitH.
Expand

Additional news items may be found on the IACR news page.