International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 13 May 2024

Nilanjan Datta, Shreya Dey, Avijit Dutta, Devdutto Kanungo
ePrint Report ePrint Report
In FSE'16, Luykx et al. have proposed $\textsf{LightMAC}$ that provably achieves a query length independent PRF security bound. To be precise, the construction achieves security roughly in the order of $O(q^2/2^n)$, when instantiated with two independently keyed $n$-bit block ciphers and $q$ is the total number of queries made by the adversary. Subsequently, in ASIACRYPT'17, Naito proposed a beyond-birthday-bound variant of the $\textsf{LightMAC}$ construction, dubbed as $\textsf{LightMAC_Plus}$, that is built on three independently keyed $n$-bit block ciphers and achieves $2n/3$-bits PRF security. Security analyses of these two constructions have been conducted in the single-user setting, where we assume that the adversary has the access to a single instance of the construction. In this paper, we investigate, for the first time, the security of the $\textsf{LightMAC}$ and the $\textsf{LightMAC_Plus}$ construction in the context of multi-user setting, where we assume that the adversary has access to more than one instances of the construction. In particular, we have shown that $\textsf{LightMAC}$ remains secure roughly up to $2^{n/2}$ construction queries and $2^k$ ideal-cipher queries in the ideal-cipher model and $\textsf{LightMAC_Plus}$ maintains security up to approximately $2^{2n/3}$ construction queries and $2^{2k/3}$ ideal-cipher queries in the ideal-cipher model, where $n$ denotes the block size and $k$ denotes the key size of the block cipher.
Expand

Additional news items may be found on the IACR news page.