International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 12 July 2024

Maximilian Kroschewski, Anja Lehmann, Cavit Özbay
ePrint Report ePrint Report
Single Sign-On (SSO) allows users to conveniently authenticate to many Relying Parties (RPs) through a central Identity Provider (IdP). SSO supports unlinkable authentication towards the RPs via pairwise pseudonyms, where the IdP assigns the user an RP-specific pseudonym. This feature has been rolled out prominently within Apple's SSO service. While establishing unlinkable identities provides privacy towards RPs, it actually emphasizes the main privacy problem of SSO: with every authentication request, the IdP learns the RP that the user wants to access. Solutions to overcome this limitation exist, but either assume users to behave honestly or require them to manage long-term cryptographic keys.

In this work, we propose the first SSO system that can provide such pseudonymous authentication in an unobservable yet strongly secure and convenient manner. That is, the IdP blindly derives the user's pairwise pseudonym for the targeted RP without learning the RP's identity and without requiring key material handled by the user. We formally define the desired security and privacy properties for such unlinkable, unobservable, and strongly secure SSO. In particular, our model includes the often neglected RP authentication: the IdP typically wants to limit its services to registered RPs only and thus must be able to (blindly) verify that it issues the token and pseudonym to such a registered RP. We propose a simple construction that combines signatures with efficient proofs-of-knowledge with a blind, yet verifiable, evaluation of the Hashed-Diffie-Hellman PRF. We prove the security of our construction and demonstrate its efficiency through a prototypical implementation, which requires a running time of 2-20ms per involved party.
Expand

Additional news items may be found on the IACR news page.