International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 09 October 2024

Daniel Collins, Yuval Efron, Jovan Komatovic
ePrint Report ePrint Report
It is well known that a trusted setup allows one to solve the Byzantine agreement problem in the presence of $t
We further the study of crypto-agnostic Byzantine agreement among $n$ parties that answers this question in the negative. Specifically, let $t_s$ and $t_i$ denote two parameters such that (1) $2t_i + t_s < n$, and (2) $t_i \leq t_s < n/2$. Crypto-agnostic Byzantine agreement ensures agreement among honest parties if (1) the adversary is computationally bounded and corrupts up to $t_s$ parties, or (2) the adversary is computationally unbounded and corrupts up to $t_i$ parties, and is moreover given all secrets of all parties established during the setup. We propose a compiler that transforms any pair of resilience-optimal Byzantine agreement protocols in the authenticated and information-theoretic setting into one that is crypto-agnostic. Our compiler has several attractive qualities, including using only $O(\lambda n^2)$ bits over the two underlying Byzantine agreement protocols, and preserving round and communication complexity in the authenticated setting. In particular, our results improve the state-of-the-art in bit complexity by at least two factors of $n$ and provide either early stopping (deterministic) or expected constant round complexity (randomized). We therefore provide fallback security for authenticated Byzantine agreement for free for $t_i \leq n/4$.
Expand

Additional news items may be found on the IACR news page.