International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 11 October 2024

Anil Kumar Pradhan
ePrint Report ePrint Report
In this paper, we introduce a novel approach to Multi-Key Fully Homomorphic Encryption (MK-FHE) that enhances both efficiency and security beyond the capabilities of traditional MK-FHE and MultiParty Computation (MPC) systems. Our method generates a unified key structure, enabling constant ciphertext size and constant execution time for encrypted computations, regardless of the number of participants involved. This approach addresses critical limitations such as ciphertext size expansion, noise accumulation, and the complexity of relinearization, which typically hinder scalability in multi-user environments. We also propose a new decryption method that simplifies decryption to a single information exchange, in contrast to traditional multi-key FHE systems that require information to be passed between all parties sequentially.

Additionally, it significantly enhances the scalability of MK-FHE systems, allowing seamless integration of additional participants without introducing performance overhead. Through theoretical analysis and practical implementation, we demonstrate the superiority of our approach in large-scale, collaborative encrypted computation scenarios, paving the way for more robust and efficient secure data processing frameworks. Further more, unlike the threshold based FHE schemes, the proposed system doesn’t require a centralised trusted third party to split and distribute the individual secret keys, instead each participant independently generates their own secret key, ensuring both security and decentralization.
Expand

Additional news items may be found on the IACR news page.