International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 18 October 2024

Haoxiang Jin, Feng-Hao Liu, Zhedong Wang, Yang Yu, Dawu Gu
ePrint Report ePrint Report
This work conducts a comprehensive investigation on determining the entropic hardness of (R/M)LWR under polynomial modulus. Particularly, we establish the hardness of (M)LWR for general entropic secret distributions from (Module) LWE assumptions based on a new conceptually simple framework called rounding lossiness. By combining this hardness result and a trapdoor inversion algorithm with asymptotically the most compact parameters, we obtain a compact lossy trapdoor function (LTF) with improved efficiency. Extending our LTF with other techniques, we can derive a compact all-but-many LTF and PKE scheme against selective opening and chosen ciphertext attacks, solely based on (Module) LWE assumptions within a polynomial modulus. Additionally, we show a search-to-decision reduction for RLWR with Gaussian secrets from a new R\'enyi Divergence-based analysis.
Expand

Additional news items may be found on the IACR news page.