IACR News item: 15 December 2024
Madhurima Das, Bodhisatwa Mazumdar
ePrint Report
This work investigates persistent fault analysis on ASCON
cipher that has been recently standardized by NIST USA for lightweight
cryptography applications. In persistent fault, the fault once injected
through RowHammer injection techniques, exists in the system during
the entire encryption phase. In this work, we propose a model to mount
persistent fault analysis (PFA) on ASCON cipher. In the finalization
round of the ASCON cipher, we identify that the fault-injected S-Box
operation in the permutation round, $p^{12}$, is vulnerable to leaking infor-
mation about the secret key. The model can exist in two variants, a single
instance of fault-injected S-Box out of 64 parallel S-Box invocations, and
the same faulty S-Box iterated 64 times. The attack model demonstrates
that any Spongent construction operating with authenticated encryption
with associated data (AEAD) mode is vulnerable to persistent faults. In
this work, we demonstrate the scenario of a single fault wherein the fault,
once injected is persistent until the device is powered off. Using the pro-
posed method, we successfully retrieve the 128-bit key in ASCON. Our
experiments show that the minimum number and the maximum num-
ber of queries required are 63 plaintexts and 451 plaintexts, respectively.
Moreover, we observe that the number of queries required to mount the
attack depends on fault location in the S-box LUT as observed from the
plots reporting the minimum number of queries and average number of
queries for 100 key values.
Additional news items may be found on the IACR news page.