International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 13 February 2025

Jiang Yu
ePrint Report ePrint Report
This paper introduces "Little OaldresPuzzle_Cryptic," a novel lightweight symmetric encryption algorithm.

At the core of this algorithm are two main cryptographic components: the NeoAlzette permutation S-box based on ARX (Addition-Rotation-XOR) primitives and the innovative pseudo-random number generator XorConstantRotation (XCR), used exclusively in the key expansion process. The NeoAlzette S-box, a non-linear function for 32-bit pairs, is meticulously designed for both encryption strength and operational efficiency, ensuring robust security in resource-constrained environments. During the encryption and decryption processes, a pseudo-randomly selected mixed linear diffusion function, distinct from XCR, is applied, enhancing the complexity and unpredictability of the encryption.

We comprehensively explore the various technical aspects of the Little OaldresPuzzle_Cryptic algorithm.

Its design aims to balance speed and security in the encryption process, particularly for high-speed data transmission scenarios. Recognizing that resource efficiency and execution speed are crucial for lightweight encryption algorithms, without compromising security, we conducted a series of statistical tests to validate the cryptographic security of our algorithm. These tests included assessments of resistance to linear and differential cryptanalysis, among other measures.

By combining the NeoAlzette S-box with sophisticated key expansion using XCR, and integrating the pseudo-randomly selected mixed linear diffusion function in its encryption and decryption processes, our algorithm significantly enhances its capability to withstand advanced cryptographic analysis techniques while maintaining lightweight and efficient operation. Our test results demonstrate that the Little OaldresPuzzle_Cryptic algorithm effectively supports the encryption and decryption needs of high-speed data, ensuring robust security and making it an ideal choice for various modern cryptographic application scenarios.

Keywords: Symmetric Encryption Algorithm, Lightweight Cryptography, ARX Primitives, PRNG, NeoAlzette S-boxes, XorConstantRotation, Diffusion and Confusion Layers, Cryptographic Security, Statistical Tests, Resource-Constrained Environments.
Expand

Additional news items may be found on the IACR news page.