International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 19 February 2025

Jules Baudrin, Sonia Belaïd, Nicolas Bon, Christina Boura, Anne Canteaut, Gaëtan Leurent, Pascal Paillier, Léo Perrin, Matthieu Rivain, Yann Rotella, Samuel Tap
ePrint Report ePrint Report
Fully Homomorphic Encryption (FHE) allows computations on encrypted data without requiring decryption, ensuring data privacy during processing. However, FHE introduces a significant expansion of ciphertext sizes compared to plaintexts, which results in higher communication. A practical solution to mitigate this issue is transciphering, where only the master key is homomorphically encrypted, while the actual data is encrypted using a symmetric cipher, usually a stream cipher. The server then homomorphically evaluates the stream cipher to convert the encrypted data into a homomorphically encrypted form.

We introduce Transistor, a stream cipher specifically designed for efficient homomorphic evaluation within the TFHE scheme, a widely-used FHE framework known for its fast bootstrapping and ability to handle low-precision data. Transistor operates on $\mathbb{F}_{17}$ which is chosen to optimize TFHE performances. Its components are carefully engineered to both control noise growth and provide strong security guarantees. First, a simple TFHE-friendly implementation technique for LFSRs allows us to use such components to cheaply increase the state size. At the same time, a small Finite State Machine is the only part of the state updated non-linearly, each non-linear operation corresponding in TFHE to a rather expensive Programmable Bootstrapping. This update is done using an AES-round-like transformation. But, in contrast to other stream ciphers like SNOW or LEX, our construction comes with information-theoretic security arguments proving that an attacker cannot obtain any information about the secret key from three or fewer consecutive keystream outputs. These information-theoretic arguments are then combined with a thorough analysis of potential correlations to bound the minimal keystream length required for recovering the secret key.

Our implementation of Transistor significantly outperforms the state of the art of TFHE transciphering, achieving a throughput of over 60 bits/s on a standard CPU, all while avoiding the need for an expensive initialization process.
Expand

Additional news items may be found on the IACR news page.