IACR News item: 21 February 2025
Yanis Belkheyar, Patrick Derbez, Shibam Ghosh, Gregor Leander, Silvia Mella, Léo Perrin, Shahram Rasoolzadeh, Lukas Stennes, Siwei Sun, Gilles Van Assche, Damian Vizár
We study the problem of embedded code encryption, i.e., encryption for binary software code for a secure microcontroller that is stored in an insecure external memory. As every single instruction must be decrypted before it can be executed, this scenario requires an extremely low latency decryption. We present a formal treatment of embedded code encryption security definitions, propose three constructions, namely ACE1, ACE2 and ACE3, and analyze their security. Further, we present ChiLow, a family of tweakable block ciphers and a related PRF specifically designed for embedded code encryption. At the core of ChiLow, there is ChiChi, a new family of non-linear layers of even dimension based on the well-known χ function. Our fully unrolled hardware implementation of ChiLow, using the Nangate 15nm Open Cell Library, achieves a decryption latency of less than 280 picoseconds.
Additional news items may be found on the IACR news page.