IACR News item: 05 March 2025
Nitin Kumar Sharma, Sabyasachi Dey, Santanu Sarkar, Subhamoy Maitra
In this paper, we analyze the subtle issues of complexity estimates related to state-of-the-art cryptanalytic efforts on ChaCha. In this regard, we demonstrate that the currently best-known cryptanalytic result on $7$-round ChaCha with time $2^{189.7}$ and data $2^{102.63}$ [Xu et al., ToSC 2024] can be estimated as $2^{178.12}$ for time and $2^{101.09}$ for data complexity. We improve the best-known result for the $7.25$ round by obtaining an improved set of Probabilistic Neutral Bits and considering our revised estimation. Our result with time complexity $2^{212.43}$ and data complexity $2^{100.56}$ improves the result of Xu et al., where they could achieve time and data complexity $2^{223.9}$ and $2^{100.80}$, respectively. For both the $7$ and $7.25$ rounds, we can show an improvement of the order of $2^{11}$ in the time complexity. For $7.5$-round, we improve the result of Dey [IEEE-IT 2024], which reports the time and data complexity of $2^{255.24}$ and $2^{32.64}$, respectively. By applying the formula of the same paper and incorporating additional PNBs, we obtain improved time and data complexity of $2^{253.23}$ and $2^{34.47}$, respectively. Thus, this paper describes the currently best-known cryptanalytic results against reduced round ChaCha. Our results do not affect the security claims of the complete algorithm with 20 rounds. Also, we provide a rebuttal of the Work by Wang et al. \cite{wangeprint} and analyze their claim about the error in the ``Divide-and-Conquer'' Approach.
Additional news items may be found on the IACR news page.