IACR News item: 26 March 2025
Julien Devevey, Morgane Guerreau, Thomas Legavre, Ange Martinelli, Thomas Ricosset
HuFu is an unstructured lattice-based signature scheme proposed during the NIST PQC standardization process. In this work, we present a side-channel analysis of HuFu's reference implementation.
We first exploit the multiplications involving its two main secret matrices, recovering approximately half of their entries through a non-profiled power analysis with a few hundred traces. Using these coefficients, we reduce the dimension of the underlying LWE problem, enabling full secret key recovery with calls to a small block-sized BKZ.
To mitigate this attack, we propose a countermeasure that replaces sensitive computations involving a secret matrix with equivalent operations derived solely from public elements, eliminating approximately half of the identified leakage and rendering the attack unfeasible.
Finally, we perform a non-profiled power analysis targeting HuFu's Gaussian sampling procedure, recovering around 75\% of the remaining secret matrix's entries in a few hundred traces. While full key recovery remains computationally intensive, we demonstrate that partial knowledge of the secret significantly improves the efficiency of signature forgery.
We first exploit the multiplications involving its two main secret matrices, recovering approximately half of their entries through a non-profiled power analysis with a few hundred traces. Using these coefficients, we reduce the dimension of the underlying LWE problem, enabling full secret key recovery with calls to a small block-sized BKZ.
To mitigate this attack, we propose a countermeasure that replaces sensitive computations involving a secret matrix with equivalent operations derived solely from public elements, eliminating approximately half of the identified leakage and rendering the attack unfeasible.
Finally, we perform a non-profiled power analysis targeting HuFu's Gaussian sampling procedure, recovering around 75\% of the remaining secret matrix's entries in a few hundred traces. While full key recovery remains computationally intensive, we demonstrate that partial knowledge of the secret significantly improves the efficiency of signature forgery.
Additional news items may be found on the IACR news page.