IACR News item: 04 April 2025
Dor Minzer, Kai Zhe Zheng
We give an IOPP (interactive oracle proof of proximity) for trivariate Reed-Muller codes that achieves the best known query complexity in some range of security parameters. Specifically, for degree $d$ and security parameter $\lambda\leq \frac{\log^2 d}{\log\log d}$ , our IOPP has $2^{-\lambda}$ round-by-round soundness, $O(\lambda)$ queries, $O(\log\log d)$ rounds and $O(d)$ length. This improves upon the FRI [Ben-Sasson, Bentov, Horesh, Riabzev, ICALP 2018] and the STIR [Arnon, Chiesa, Fenzi, Yogev, Crypto 2024] IOPPs for Reed-Solomon codes, that have larger query and round complexity standing at $O(\lambda \log d)$ and $O(\log d+\lambda\log\log d)$ respectively. We use our IOPP to give an IOP for the NP-complete language Rank-1-Constraint-Satisfaction with the same parameters.
Our construction is based on the line versus point test in the low-soundness regime. Compared to the axis parallel test (which is used in all prior works), the general affine lines test has improved soundness, which is the main source of our improved soundness. Using this test involves several complications, most significantly that projection to affine lines does not preserve individual degrees, and we show how to overcome these difficulties. En route, we extend some existing machinery to more general settings. Specifically, we give proximity generators for Reed-Muller codes, show a more systematic way of handling "side conditions" in IOP constructions, and generalize the compiling procedure of [Arnon, Chiesa, Fenzi, Yogev, Crypto 2024] to general codes.
Our construction is based on the line versus point test in the low-soundness regime. Compared to the axis parallel test (which is used in all prior works), the general affine lines test has improved soundness, which is the main source of our improved soundness. Using this test involves several complications, most significantly that projection to affine lines does not preserve individual degrees, and we show how to overcome these difficulties. En route, we extend some existing machinery to more general settings. Specifically, we give proximity generators for Reed-Muller codes, show a more systematic way of handling "side conditions" in IOP constructions, and generalize the compiling procedure of [Arnon, Chiesa, Fenzi, Yogev, Crypto 2024] to general codes.
Additional news items may be found on the IACR news page.