IACR News item: 13 May 2025
Daniel Rausch, Nicolas Huber, Ralf Kuesters
Voter privacy and end-to-end (E2E) verifiability are critical features of electronic voting (e-voting) systems to safeguard elections. To achieve these properties commonly a perfect bulletin board (BB) is assumed that provides consistent, reliable, and tamper-proof storage and transmission of voting data. However, in practice, BBs operate in asynchronous and unreliable networks, and hence, are susceptible to vulnerabilities such as equivocation attacks and dropped votes, which can compromise both verifiability and privacy. Although prior research has weakened the perfect BB assumption, it still depends on trusting certain BB components.
In this work, we present and initiate a formal exploration of designing e-voting systems based on fully untrusted BBs. For this purpose, we leverage the notion of accountability and in particular use accountable BBs. Accountability ensures that if a security breach occurs, then cryptographic evidence can identify malicious parties. Fully untrusted BBs running in asynchronous networks bring new challenges. Among others, we identify several types of attacks that a malicious but accountable BB might be able to perform and propose a new E2E verifiability notion for this setting. Based on this notion and as a proof of concept, we construct the first e-voting system that is provably E2E verifiable and provides vote privacy even when the underlying BB is fully malicious. This establishes an alternative to traditional e-voting architectures that rely on (threshold) trusted BB servers.
In this work, we present and initiate a formal exploration of designing e-voting systems based on fully untrusted BBs. For this purpose, we leverage the notion of accountability and in particular use accountable BBs. Accountability ensures that if a security breach occurs, then cryptographic evidence can identify malicious parties. Fully untrusted BBs running in asynchronous networks bring new challenges. Among others, we identify several types of attacks that a malicious but accountable BB might be able to perform and propose a new E2E verifiability notion for this setting. Based on this notion and as a proof of concept, we construct the first e-voting system that is provably E2E verifiable and provides vote privacy even when the underlying BB is fully malicious. This establishes an alternative to traditional e-voting architectures that rely on (threshold) trusted BB servers.
Additional news items may be found on the IACR news page.