IACR News item: 19 May 2025
Charlotte Lefevre, Mario Marhuenda Beltrán
The keyed sponge construction has benefited from various efficiency advancements over time, most notably leading to the possibility to absorb over the entire state, as in the full-state keyed sponge. However, squeezing has always remained limited to blocks smaller than the permutation size, as security is determined by the capacity c, the size of the non-squeezed state. In this work, we present Macakey, an improved version of the full-state keyed sponge that not only absorbs over the entire state but also squeezes over the entire state. The scheme combines ideas of the full-state keyed sponge with those of the summation-truncation hybrid of Gunsing and Mennink. We demonstrate that, with no sacrifice in generic security and with only using c bits of extra storage, Macakey can significantly boost performance, particularly in scenarios requiring large amounts of output. For example, using the 320-bit Ascon permutation with a 256-bit capacity, Macakey outputs five times as many bits as the full-state keyed sponge.
Additional news items may be found on the IACR news page.