IACR News item: 06 June 2025
Haotian Chu, Xiao Wang, Yanxue Jia
Private signaling allows servers to identify a recipient's messages on a public bulletin board without knowing the recipient's metadata. It is a central tool for systems like privacy-preserving blockchains and anonymous messaging. However, unless with TEE, current constructions all assume that the servers are only passively corrupted, which significantly limits their practical relevance. In this work, we present a TEE-free simulation-secure private signaling protocol assuming two non-colluding servers, either of which can be actively corrupted.
Crucially, we convert signal retrieval into a problem similar to private set intersection and use custom-built zero-knowledge proofs to ensure consistency with the public bulletin board. As a result, our protocol achieves lower server-to-server communication overhead and a much smaller digest compared to state-of-the-art semi-honest protocol. For example, for a board size of $2^{19}$ messages, the resulting digest size is only 33.57KB. Our protocol is also computationally efficient: retrieving private signals only takes about 2 minutes, using 16 threads and a LAN network.
Additional news items may be found on the IACR news page.