International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 12 June 2025

Roberto La Scala, Sharwan K. Tiwari
ePrint Report ePrint Report
The multistep solving strategy consists in a divide-and-conquer approach: when a multivariate polynomial system is computationally infeasible to solve directly, one variable is assigned over the elements of the base finite field, and the procedure is recursively applied to the resulting simplified systems. In a previous work by the same authors (among others), this approach proved effective in the algebraic cryptanalysis of the Trivium cipher.

In this paper, we present a new implementation of the corresponding algorithm based on a Depth-First Search strategy, along with a novel complexity analysis leveraging tree structures. We further introduce the notion of an ``oracle function'' as a general predictive tool for deciding whether the evaluation of a new variable is necessary to simplify the current polynomial system. This notion allows us to unify all previously proposed variants of the multistep strategy, including the classical hybrid approach, by appropriately selecting the oracle function.

Finally, we apply the multistep solving strategy to the cryptanalysis of the low-latency block cipher Aradi, recently introduced by the NSA. We present the first full-round algebraic attack, raising concerns about the cipher’s actual security with respect to its key length.
Expand

Additional news items may be found on the IACR news page.