International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 07 July 2025

Christodoulos Pappas, Dimitrios Papadopoulos
ePrint Report ePrint Report
Zero-knowledge succinct non-interactive arguments (zkSNARKs) are notorious for their large prover space requirements, which almost prohibits their use for really large instances. Space-efficient zkSNARKs aim to address this by limiting the prover space usage, without critical sacrifices to its runtime. In this work, we introduce Hobbit, the only existing space-efficient zkSNARK that achieves optimal prover time $O(|C|)$ for an arithmetic circuit $C$. At the same time, Hobbit is the first transparent and plausibly post-quantum secure construction of its kind. Moreover, our experimental evaluation shows that Hobbit outperforms all prior general-purpose space-efficient zkSNARKs in the literature across four different applications (arbitrary arithmetic circuits, inference of pruned Multi-Layer Perceptron, batch AES128 evaluation, and select-and-aggregate SQL query) by $\times$8-$\times$$56$ in terms or prover time while requiring up to $\times$23 less total space.

At a technical level, we introduce two new building blocks that may be of independent interest: (i) the first sumcheck protocol for products of polynomials with optimal prover time in the streaming setting, and (ii) a novel multi-linear plausibly post-quantum polynomial commitment that outperforms all prior works in prover time (and can be tuned to work in a space-efficient manner). We build Hobbit by combining the above with a modified version of HyperPlonk, providing an explicit routine to stream access to the circuit evaluation.
Expand

Additional news items may be found on the IACR news page.