IACR News item: 11 July 2025
Paula Arnold, Sebastian Berndt, Thomas Eisenbarth, Sebastian Faust, Marc Gourjon, Elena Micheli, Maximilian Orlt, Pajam Pauls, Kathrin Wirschem, Liang Zhao
Rigorous protection against physical attacks which simultaneously and adaptively combine passive side-channel observations with active fault injections is an active and recent area of research. At CRYPTO 2023, Berndt et al. presented the “LaOla” scheme for protecting arbitrary circuits against said attacks. Their constructions use polynomial masking in an optimal least number of shares and come with security proofs based on formal notions of security.
In this work, we improve the security of this construction significantly by adapting it. We present a new refresh gadget designed specifically for combined attacks. This gadget does not only counteract passive side-channel attacks but additionally randomizes the effect of faults in a detectable but secret-independent manner. We introduce sufficient and attainable security definitions which are stronger than in the work of Berndt et al. to achieve this. Further, we apply the principle to the LaOla construction and prove the stronger security notions for the adapted multiplication gadget, as well as the original properties of composability and strong security against adaptive attacks combining side-channel and faults.
In this work, we improve the security of this construction significantly by adapting it. We present a new refresh gadget designed specifically for combined attacks. This gadget does not only counteract passive side-channel attacks but additionally randomizes the effect of faults in a detectable but secret-independent manner. We introduce sufficient and attainable security definitions which are stronger than in the work of Berndt et al. to achieve this. Further, we apply the principle to the LaOla construction and prove the stronger security notions for the adapted multiplication gadget, as well as the original properties of composability and strong security against adaptive attacks combining side-channel and faults.
Additional news items may be found on the IACR news page.