International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Toshihiko Matsuo

Publications

Year
Venue
Title
2007
EPRINT
Proxy Re-encryption Systems for Identity-based Encryption
Toshihiko Matsuo
A proxy re-encryption system allows the proxy to transform ciphertexts encrypted under Alice's public key into the different ciphertexts that can be decrypted by Bob's secret key. In this paper, we propose new proxy re-encryption systems; one for the transformation from ciphertexts encrypted under a traditional certificate-based public key into the ciphertexts that can be decrypted by an secret key for Identity-Based Encryption, and the other one for the transformation from ciphertexts encrypted in IBE manner into the different ciphertexts that can be decrypted by the other secret key for the IBE.
2005
EPRINT
On Universal Composable Security of Time-Stamping Protocols
Toshihiko Matsuo Shin'ichiro Matsuo
Time-stamping protocols, which assure that a document was existed at a certain time, are applied to some useful and practical applications such as electronic patent applications and so on. There are two major time-stamping protocols, the simple protocol and the linking protocol. In the former, a time-stamp authority issues a time-stamp token that is the digital signature of the concatenated value of a hashed message and the present time. In the latter, the time-stamp authority issues a time-stamp token that is the hash value of the concatenated value of a hashed message and the previous hash value. Although security requirements and analysis for above time-stamping protocols has been discussed, there are no strict cryptographic security notions for them. In this paper, we reconsider the security requirements for time-stamping protocols and define security notions for them, in a universally composable security sense, which was proposed by Canetti. We also show that these notions can be achieved using combinations of a secure key exchange protocol, a secure symmetric encryption scheme, and a secure digital signature scheme.

Coauthors

Shin'ichiro Matsuo (1)