International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Paper: On the Boolean functions With Maximum Possible Algebraic Immunity : Construction and A Lower Bound of the Count

Authors:
Longjiang Qu
Guozhu Feng
Chao Li
Download:
URL: http://eprint.iacr.org/2005/449
Search ePrint
Search Google
Abstract: This paper gives a construction method which can get a large class of Boolean functions with maximum algebraic immunity(AI) from one such giving function. Our constructions get more functions than any previous construction. The cryptographic properties, such as balance, algebraic degree etc, of those functions are studied. It shows that we can construct Boolean functions with better cryptographic properties, which gives the guidance for the design of Boolean functions to resist algebraic attack, and helps to design good cryptographic primitives of cryptosystems. From these constructions, we show that the count of the Boolean functions with maximum AI is bigger than ${2^{2^{n-1}}}$ for $n$ odd, bigger than ${2^{2^{n-1}+\frac{1}{2}\binom{n}{\frac{n}{2}} }}$ for $n$ even, which confirms the computer simulation result that such boolean functions are numerous. As far as we know, this is the first bound about this count.
BibTeX
@misc{eprint-2005-12782,
  title={On the Boolean functions With Maximum Possible Algebraic Immunity : Construction and A Lower Bound of the Count},
  booktitle={IACR Eprint archive},
  keywords={foundations / Algebraic Attack, Algebraic Degree, Algebraic Immunity, Annihilator, Balance, Boolean Functions},
  url={http://eprint.iacr.org/2005/449},
  note={ ljqu_happy@hotmail.com 13246 received 25 Nov 2005, last revised 7 Apr 2006},
  author={Longjiang Qu and Guozhu Feng and Chao Li},
  year=2005
}