International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Populating the Zoo of Rugged Pseudorandom Permutations

Authors:
Jean Paul Degabriele , Technology Innovation Institute
Vukašin Karadžić , TU Darmstadt
Download:
Search ePrint
Search Google
Presentation: Slides
Conference: ASIACRYPT 2023
Abstract: A Rugged Pseudorandom Permutation (RPRP) is a variable-input-length tweakable cipher satisfying a security notion that is intermediate between tweakable PRP and tweakable SPRP. It was introduced at CRYPTO 2022 by Degabriele and Karadžić, who additionally showed how to generically convert such a primitive into nonce-based and nonce-hiding AEAD schemes satisfying either misuse-resistance or release-of-unverified-plaintext security as well as Nonce-Set AEAD which has applications in protocols like QUIC and DTLS. Their work shows that RPRPs are powerful and versatile cryptographic primitives. However, the RPRP security notion itself can seem rather contrived, and the motivation behind it is not immediately clear. Moreover, they only provided a single RPRP construction, called UIV, which puts into question the generality of their modular approach and whether other instantiations are even possible. In this work, we address this question positively by presenting new RPRP constructions, thereby validating their modular approach and providing further justification in support of the RPRP security definition. Furthermore, we present a more refined view of their results by showing that strictly weaker RPRP variants, which we introduce, suffice for many of their transformations. From a theoretical perspective, our results show that the well-known three-round Feistel structure achieves stronger security as a permutation than a mere pseudorandom permutation—as was established in the seminal result by Luby and Rackoff. We conclude on a more practical note by showing how to extend the left domain of one RPRP construction for applications that require larger values in order to meet the desired level of security.
BibTeX
@inproceedings{asiacrypt-2023-33522,
  title={Populating the Zoo of Rugged Pseudorandom Permutations},
  publisher={Springer-Verlag},
  author={Jean Paul Degabriele and Vukašin Karadžić},
  year=2023
}