International Association for Cryptologic Research

International Association
for Cryptologic Research


Benjamin Hong Meng Tan


Field Instruction Multiple Data 📺
Fully homomorphic encryption~(FHE) has flourished since it was first constructed by Gentry~(STOC 2009). Single instruction multiple data~(SIMD) gave rise to efficient homomorphic operations on vectors in \((\mathbb{F}_{t^d})^\ell\), for prime \(t\). RLWE instantiated with cyclotomic polynomials of the form \(X^{2^N}+1\) dominate implementations of FHE due to highly efficient fast fourier transformations. However, this choice yields very short SIMD plaintext vectors and high degree extension fields, e.g. \(\ell < 100, d > 100\) for small primes~(\(t = 3, 5, \dots\)). In this work, we describe a method to encode more data on top of SIMD, \emph{Field Instruction Multiple Data}, applying reverse multiplication friendly embedding~(RMFE) to FHE. With RMFE, length-\(k\) \(\mathbb{F}_{t}\) vectors can be encoded into \(\mathbb{F}_{t^d}\) and multiplied once. The results have to be recoded~(decoded and then re-encoded) before further multiplications can be done. We introduce an FHE-specific technique to additionally evaluate arbitrary linear transformations on encoded vectors for free during the FHE recode operation. On top of that, we present two optimizations to unlock high degree extension fields with small \(t\) for homomorphic computation: \(r\)-fold RMFE, which allows products of up to \(2^r\) encoded vectors before recoding, and a three-stage recode process for RMFEs obtained by composing two smaller RMFEs. Experiments were performed to evaluate the effectiveness of FIMD from various RMFEs compared to standard SIMD operations. Overall, we found that FIMD generally had \(>2\times\) better (amortized) multiplication times compared to FHE for the same amount of data, while using almost \(k/2 \times\) fewer ciphertexts required.
Zero-Knowledge Elementary Databases with More Expressive Queries
Benoît Libert Khoa Nguyen Benjamin Hong Meng Tan Huaxiong Wang
Zero-knowledge elementary databases (ZK-EDBs) are cryptographic schemes that allow a prover to commit to a set $$\mathsf {D}$$ of key-value pairs so as to be able to prove statements such as “x belongs to the support of $$\mathsf {D}$$ and $$\mathsf {D}(x)=y$$” or “x is not in the support of $$\mathsf {D}$$”. Importantly, proofs should leak no information beyond the proven statement and even the size of $$\mathsf {D}$$ should remain private. Chase et al. (Eurocrypt’05) showed that ZK-EDBs are implied by a special flavor of non-interactive commitment, called mercurial commitment, which enables efficient instantiations based on standard number theoretic assumptions. On the other hand, the resulting ZK-EDBs are only known to support proofs for simple statements like (non-)membership and value assignments. In this paper, we show that mercurial commitments actually enable significantly richer queries. We show that, modulo an additional security property met by all known efficient constructions, they actually enable range queries over keys and values – even for ranges of super-polynomial size – as well as membership/non-membership queries over the space of values. Beyond that, we exploit the range queries to realize richer queries such as $$k$$-nearest neighbors and revealing the $$k$$ smallest or largest records within a given range. In addition, we provide a new realization of trapdoor mercurial commitment from standard lattice assumptions, thus obtaining the most expressive quantum-safe ZK-EDB construction so far.