International Association for Cryptologic Research

International Association
for Cryptologic Research


Victor Mollimard


Partial Sums Meet FFT: Improved Attack on 6-Round AES
The partial sums cryptanalytic technique was introduced in 2000 by Ferguson et al., who used it to break 6-round AES with time complexity of $2^{52}$ S-box computations -- a record that has not been beaten ever since. In 2014, Todo and Aoki showed that for 6-round AES, partial sums can be replaced by a technique based on the Fast Fourier Transform (FFT), leading to an attack with a comparable complexity. In this paper we show that the partial sums technique can be combined with an FFT-based technique, to get the best of the two worlds. Using our combined technique, we obtain an attack on 6-round AES with complexity of about $2^{46.4}$ additions. We fully implemented the attack experimentally, along with the partial sums attack and the Todo-Aoki attack, and confirmed that our attack improves the best known attack on 6-round AES by a factor of more than 32. We expect that our technique can be used to significantly enhance numerous attacks that exploit the partial sums technique. To demonstrate this, we use our technique to improve the best known attack on 7-round Kuznyechik by a factor of more than 80, and to reduce the complexity of the best known attack on the full MISTY1 from $2^{69.5}$ to $2^{67}$.
Fake Near Collisions Attacks 📺
Fast Near collision attacks on the stream ciphers Grain v1 and A5/1 were presented at Eurocrypt 2018 and Asiacrypt 2019 respectively. They use the fact that the entire internal state can be split into two parts so that the second part can be recovered from the first one which can be found using the keystream prefix and some guesses of the key materials.In this paper we reevaluate the complexity of these attacks and show that actually they are inferior to previously known results. Basically, we show that their complexity is actually much higher and we point out the main problems of these papers based on information theoretic ideas. We also check that some distributions do not have the predicted entropy loss claimed by the authors. Checking cryptographic attacks with galactic complexity is difficult in general. In particular, as these attacks involve many steps it is hard to identify precisely where the attacks are flawed. But for the attack against A5/1, it could have been avoided if the author had provided a full experiment of its attack since the overall claimed complexity was lower than 232 in both time and memory.
Efficient Search for Optimal Diffusion Layers of Generalized Feistel Networks 📺
The Feistel construction is one of the most studied ways of building block ciphers. Several generalizations were then proposed in the literature, leading to the Generalized Feistel Network, where the round function first applies a classical Feistel operation in parallel on an even number of blocks, and then a permutation is applied to this set of blocks. In 2010 at FSE, Suzaki and Minematsu studied the diffusion of such construction, raising the question of how many rounds are required so that each block of the ciphertext depends on all blocks of the plaintext. They thus gave some optimal permutations, with respect to this diffusion criteria, for a Generalized Feistel Network consisting of 2 to 16 blocks, as well as giving a good candidate for 32 blocks. Later at FSE’19, Cauchois et al. went further and were able to propose optimal even-odd permutations for up to 26 blocks.In this paper, we complete the literature by building optimal even-odd permutations for 28, 30, 32, 36 blocks which to the best of our knowledge were unknown until now. The main idea behind our constructions and impossibility proof is a new characterization of the total diffusion of a permutation after a given number of rounds. In fact, we propose an efficient algorithm based on this new characterization which constructs all optimal even-odd permutations for the 28, 30, 32, 36 blocks cases and proves a better lower bound for the 34, 38, 40 and 42 blocks cases. In particular, we improve the 32 blocks case by exhibiting optimal even-odd permutations with diffusion round of 9. The existence of such a permutation was an open problem for almost 10 years and the best known permutation in the literature had a diffusion round of 10. Moreover, our characterization can be implemented very efficiently and allows us to easily re-find all optimal even-odd permutations for up to 26 blocks with a basic exhaustive search