International Association for Cryptologic Research

International Association
for Cryptologic Research


Federico Savasta


Bandwidth-Efficient Threshold EC-DSA 📺
Threshold Signatures allow n parties to share the power of issuing digital signatures so that any coalition of size at least $$t+1$$ can sign, whereas groups of t or less players cannot. Over the last few years many schemes addressed the question of realizing efficient threshold variants for the specific case of EC-DSA signatures. In this paper we present new solutions to the problem that aim at reducing the overall bandwidth consumption. Our main contribution is a new variant of the Gennaro and Goldfeder protocol from ACM CCS 2018 that avoids all the required range proofs, while retaining provable security against malicious adversaries in the dishonest majority setting. Our experiments show that – for all levels of security – our signing protocol reduces the bandwidth consumption of best previously known secure protocols for factors varying between 4.4 and 9, while key generation is consistently two times less expensive. Furthermore compared to these same protocols, our signature generation is faster for 192-bits of security and beyond.
Two-Party ECDSA from Hash Proof Systems and Efficient Instantiations 📺
ECDSA is a widely adopted digital signature standard. Unfortunately, efficient distributed variants of this primitive are notoriously hard to achieve and known solutions often require expensive zero knowledge proofs to deal with malicious adversaries. For the two party case, Lindell [Lin17] recently managed to get an efficient solution which, to achieve simulation-based security, relies on an interactive, non standard, assumption on Paillier’s cryptosystem. In this paper we generalize Lindell’s solution using hash proof systems. The main advantage of our generic method is that it results in a simulation-based security proof without resorting to non-standard interactive assumptions.Moving to concrete constructions, we show how to instantiate our framework using class groups of imaginary quadratic fields. Our implementations show that the practical impact of dropping such interactive assumptions is minimal. Indeed, while for 128-bit security our scheme is marginally slower than Lindell’s, for 256-bit security it turns out to be better both in key generation and signing time. Moreover, in terms of communication cost, our implementation significantly reduces both the number of rounds and the transmitted bits without exception.