## CryptoDB

### Khashayar Barooti

#### Publications

**Year**

**Venue**

**Title**

2023

CRYPTO

On Active Attack Detection in Messaging with Immediate Decryption
Abstract

The widely used Signal protocol provides protection against state exposure attacks through forward security (protecting past messages) and post-compromise security (for restoring security). It supports immediate decryption, allowing messages to be re-ordered or dropped at the protocol level without affecting correctness. In this work, we consider strong active attack detection for secure messaging with immediate decryption, where parties are able to immediately detect active attacks under certain conditions. We first consider in-band active attack detection, where participants who have been actively compromised but are still able to send a single message to their partner can detect the compromise. We propose two complementary notions to capture security, and present a compiler that provides security with respect to both notions. Our notions generalise existing work (RECOVER security) which only supported in-order messaging. We also study the related out-of-band attack detection problem by considering communication over out-of-band, authenticated channels and propose analogous security notions. We prove that one of our two notions in each setting imposes a linear communication overhead in the number of sent messages and security parameter using an information-theoretic argument. This implies that each message must information-theoretically contain all previous messages and that our construction, that essentially attaches the entire message history to every new message, is asymptotically optimal. We then explore ways to bypass this lower bound and highlight the feasibility of practical active attack detection compatible with immediate decryption.

2023

TCC

Public-Key Encryption with Quantum Keys
Abstract

In the framework of Impagliazzo's five worlds, a distinction is often made between two worlds, one where public-key encryption exists (Cryptomania), and one in which only one-way functions exist (MiniCrypt). However, the boundaries between these worlds can change when quantum information is taken into account. Recent work has shown that quantum variants of oblivious transfer and multi-party computation, both primitives that are classically in Cryptomania, can be constructed from one-way functions, placing them in the realm of quantum MiniCrypt (the so-called MiniQCrypt). This naturally raises the following question:
Is it possible to construct a quantum variant of public-key encryption, which is at the heart of Cryptomania, from one-way functions or potentially weaker assumptions?
In this work, we initiate the formal study of the notion of quantum public-key encryption (qPKE), i.e., public-key encryption where keys are allowed to be quantum states. We propose new definitions of security and several constructions of qPKE based on the existence of one-way functions (OWF), or even weaker assumptions, such as pseudorandom function-like states (PRFS) and pseudorandom function-like states with proof of destruction (PRFSPD). Finally, to give a tight characterization of this primitive, we show that computational assumptions are necessary to build quantum public-key encryption. That is, we give a self-contained proof that no quantum public-key encryption scheme can provide information-theoretic security.

2021

ASIACRYPT

New Attacks on LowMC instances with a Single Plaintext/Ciphertext pair
📺
Abstract

Cryptanalysis of the LowMC block cipher when the attacker has access to a single known
plaintext/ciphertext pair is a mathematically challenging problem. This is because the attacker
is unable to employ most of the standard techniques in symmetric cryptography like linear and differential cryptanalysis. This scenario is particularly relevant while arguing the security of the Picnic digital signature scheme in which the plaintext/ciphertext pair generated by the LowMC block cipher serves as the public (verification) key and the corresponding LowMC encryption key also serves as the secret (signing) key of the signature scheme. In the paper by Banik et al. (IACR ToSC 2020:4), the authors used a linearization technique of the LowMC S-box to mount attacks on some instances of the block cipher. In this paper, we first make a more precise complexity analysis of the linearization attack. Then, we show how to perform a 2-stage MITM attack on LowMC. The first stage reduces the key candidates corresponding to a fraction of key bits of the master key. The second MITM stage between this reduced candidate set and the remaining fraction of key bits successfully recovers the master key. We show that the combined computational complexity of both these stages is significantly lower than those reported in the ToSC paper by Banik et al.

2020

TOSC

Cryptanalysis of LowMC instances using single plaintext/ciphertext pair
Abstract

Arguably one of the main applications of the LowMC family ciphers is in the post-quantum signature scheme PICNIC. Although LowMC family ciphers have been studied from a cryptanalytic point of view before, none of these studies were directly concerned with the actual use case of this cipher in PICNIC signature scheme. Due to the design paradigm of PICNIC, an adversary trying to perform a forgery attack on the signature scheme instantiated with LowMC would have access to only a single given plaintext/ciphertext pair, i.e. an adversary would only be able to perform attacks with data complexity 1 in a known-plaintext attack scenario. This restriction makes it impossible to employ classical cryptanalysis methodologies such as differential and linear cryptanalysis. In this paper we introduce two key-recovery attacks, both in known-plaintext model and of data complexity 1 for two variants of LowMC, both instances of the LowMC cryptanalysis challenge.

2019

TOSC

Cryptanalysis of Plantlet
📺
Abstract

Plantlet is a lightweight stream cipher designed by Mikhalev, Armknecht and Müller in IACR ToSC 2017. It has a Grain-like structure with two state registers of size 40 and 61 bits. In spite of this, the cipher does not seem to lose in security against generic Time-Memory-Data Tradeoff attacks due to the novelty of its design. The cipher uses a 80-bit secret key and a 90-bit IV. In this paper, we first present a key recovery attack on Plantlet that requires around 276.26 Plantlet encryptions. The attack leverages the fact that two internal states of Plantlet that differ in the 43rd LFSR location are guaranteed to produce keystream that are either equal or unequal in 45 locations with probability 1. Thus an attacker can with some probability guess that when 2 segments of keystream blocks possess the 45 bit difference just mentioned, they have been produced by two internal states that differ only in the 43rd LFSR location. Thereafter by solving a system of polynomial equations representing the keystream bits, the attacker can find the secret key if his guess was indeed correct, or reach some kind of contradiction if his guess was incorrect. In the latter event, he would repeat the procedure for other keystream blocks with the given difference. We show that the process when repeated a finite number of times, does indeed yield the value of the secret key.
In the second part of the paper, we observe that the previous attack was limited to internal state differences that occurred at time instances that were congruent to 0 mod 80. We further observe that by generalizing the attack to include internal state differences that are congruent to all equivalence classed modulo 80, we lower the total number of keystream bits required to perform the attack and in the process reduce the attack complexity to 269.98 Plantlet encryptions.

#### Coauthors

- Subhadeep Banik (3)
- Khashayar Barooti (5)
- Daniel Collins (1)
- Simone Colombo (1)
- F. Betül Durak (1)
- Alex B. Grilo (1)
- Loïs Huguenin-Dumittan (2)
- Takanori Isobe (1)
- Giulio Malavolta (1)
- Or Sattath (1)
- Serge Vaudenay (3)
- Quoc-Huy Vu (1)
- Michael Walter (1)
- Hailun Yan (1)