CryptoDB
Antoine Plouviez
Publications
Year
Venue
Title
2021
ASIACRYPT
The One-More Discrete Logarithm Assumption in the Generic Group Model
📺
Abstract
The one more-discrete logarithm assumption (OMDL) underlies the security analysis of identification protocols, blind signature and multi-signature schemes, such as blind Schnorr signatures and the recent MuSig2 multi-signatures. As these schemes produce standard Schnorr signatures, they are compatible with existing systems, e.g. in the context of blockchains. OMDL is moreover assumed for many results on the impossibility of certain security reductions.
Despite its wide use, surprisingly, OMDL is lacking any rigorous analysis; there is not even a proof that it holds in the generic group model (GGM). (We show that a claimed proof is flawed.) In this work we give a formal proof of OMDL in the GGM. We also prove a related assumption, the one-more computational Diffie-Hellman assumption, in the GGM. Our proofs deviate from prior GGM proofs and replace the use of the Schwartz-Zippel Lemma by a new argument.
2020
EUROCRYPT
Blind Schnorr Signatures and Signed ElGamal Encryption in the Algebraic Group Model
📺
Abstract
The Schnorr blind signing protocol allows blind issuing of Schnorr signatures, one of the most widely used signatures. Despite its practical relevance, its security analysis is unsatisfactory. The only known security proof is informal and in the combination of the generic group model (GGM) and the random oracle model (ROM) assuming that the ``ROS problem'' is hard. The situation is similar for (Schnorr-)signed ElGamal encryption, a simple CCA2-secure variant of ElGamal.
We analyze the security of these schemes in the algebraic group model (AGM), an idealized model closer to the standard model than the GGM. We first prove tight security of Schnorr signatures from the discrete logarithm assumption (DL) in the AGM+ROM. We then give a rigorous proof for blind Schnorr signatures in the AGM+ROM assuming hardness of the one-more discrete logarithm problem and ROS.
As ROS can be solved in sub-exponential time using Wagner's algorithm, we propose a simple modification of the signing protocol, which leaves the signatures unchanged. It is therefore compatible with systems that already use Schnorr signatures, such as blockchain protocols. We show that the security of our modified scheme relies on the hardness of a problem related to ROS that appears much harder. Finally, we give tight reductions, again in the AGM+ROM, of the CCA2 security of signed ElGamal encryption to DDH and signed hashed ElGamal key encapsulation to DL.
Coauthors
- Balthazar Bauer (1)
- Georg Fuchsbauer (2)
- Antoine Plouviez (2)
- Yannick Seurin (1)