International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Andrew Drucker

Affiliation: University of Chicago

Publications

Year
Venue
Title
2020
CRYPTO
Time-Space Tradeoffs and Short Collisions in Merkle-Damgård Hash Functions 📺
We study collision-finding against Merkle-Damgård hashing in the random-oracle model by adversaries with an arbitrary $S$-bit auxiliary advice input about the random oracle and $T$ queries. Recent work showed that such adversaries can find collisions (with respect to a random IV) with advantage $\Omega(ST^2/2^n)$, where $n$ is the output length, beating the birthday bound by a factor of $S$. These attacks were shown to be optimal. We observe that the collisions produced are very long, on the order $T$ blocks, which would limit their practical relevance. We prove several results related to improving these attacks to find short collisions. We first exhibit a simple attack for finding $B$-block-long collisions achieving advantage $\tilde{\Omega}(STB/2^n)$. We then study if this attack is optimal. We show that the prior technique based on the bit-fixing model (used for the $ST^2/2^n$ bound) provably cannot reach this bound, and towards a general result we prove there are qualitative jumps in the optimal attacks for finding length $1$, length $2$, and unbounded-length collisions. Namely, the optimal attacks achieve (up to logarithmic factors) order of $(S+T)/2^n$, $ST/2^n$ and $ST^2/2^n$ advantage. We also give an upper bound on the advantage of a restricted class of short-collision finding attacks via a new analysis on the growth of trees in random functional graphs that may be of independent interest.
2020
TCC
A Lower Bound for One-Round Oblivious RAM
David Cash Andrew Drucker Alexander Hoover
We initiate a fine-grained study of the round complexity of Oblivious RAM (ORAM). We prove that any one-round balls-in-bins ORAM that does not duplicate balls must have either $\Omega(\sqrt{N})$ bandwidth or $\Omega(\sqrt{N})$ client memory, where $N$ is the number of memory slots being simulated. This shows that such schemes are strictly weaker than general (multi-round) ORAMs or those with server computation, and in particular implies that a one-round version of the original square-root ORAM of Goldreich and Ostrovksy (J. ACM 1996) is optimal. We prove this bound via new techniques that differ from those of Goldreich and Ostrovksy, and of Larsen and Nielsen (CRYPTO 2018), which achieved an $\Omega(\log N)$ bound for balls-in-bins and general multi-round ORAMs respectively. Finally we give a weaker extension of our bound that allows for limited duplication of balls, and also show that our bound extends to multiple-round ORAMs of a restricted form that include the best known constructions.

Coauthors

Akshima (1)
David Cash (2)
Alexander Hoover (1)
Hoeteck Wee (1)