CryptoDB
A. Pavan
Publications and invited talks
    Year
  
  
    Venue
  
  
    Title
  
    2020
  
  
    TCC
  
  
    Perfect Zero Knowledge: New Upperbounds and Relativized Separations
 📺            
      Abstract    
    
We investigate the complexity of problems that admit perfect zero-knowledge interactive protocols and establish new unconditional upper bounds and oracle separation results. We establish our results by investigating certain distribution testing problems: computational problems over high-dimensional distributions represented by succinct Boolean circuits.  A relatively less-investigated complexity class SBP emerged as significant in this study. The main results we establish are: 
(1) A unconditional inclusion  that $\NIPZK \subseteq \CoSBP$.
(2) Construction of a relativized world in which there is a distribution testing problem that lies in NIPZK but not in SBP, thus giving a relativized separation of $\NIPZK$ (and hence PZK) from SBP. 
(3) Construction of a relativized world in which there is a distribution testing problem that lies in $\PZK$ but not in $\CoSBP$, thus giving a relativized separation of PZK$ from CoSBP. 
Results (1) and (3) imply an oracle separating PZK from NIPZK. Our results refine the landscape of perfect zero-knowledge classes in relation to traditional complexity classes.
  Coauthors
- Peter Dixon (1)
- Sutanu Gayen (1)
- A. Pavan (1)
- N. V. Vinodchandran (1)
