International Association for Cryptologic Research

International Association
for Cryptologic Research


Jessica Sorrell


Securing Approximate Homomorphic Encryption using Differential Privacy 📺
Recent work of Li and Micciancio (Eurocrypt 2021) has shown that the traditional formulation of indistinguishabiity under chosen plaintext attack (IND-CPA) is not adequate to capture the security of approximate homomorphic encryption against passive adversaries, and identified a stronger IND-CPA^D security definition (IND-CPA with decryption oracles) as the appropriate security target for approximate encryption schemes. We show how to transform any approximate homomorphic encryption scheme achieving the weak IND-CPA security definition, into one which is provably IND-CPA^D secure, offering strong guarantees against realistic passive attacks. The method works by postprocessing the output of the decryption function with a mechanism satisfying an appropriate notion of differentially privacy (DP), adding an amount of noise tailored to the worst-case error growth of the homomorphic computation. We apply these results to the approximate homomorphic encryption scheme of Cheon, Kim, Kim, and Song (CKKS, Asiacrypt 2017), proving that adding Gaussian noise to the output of CKKS decryption suffices to achieve IND-CPA^D security. We precisely quantify how much Gaussian noise must be added by proving nearly matching upper and lower bounds, showing that one cannot hope to significantly reduce the amount of noise added in this post-processing step. Based on our upper and lower bounds, we propose parameters for the counter-measures recently adopted by open-source libraries implementing CKKS. Lastly, we investigate the plausible claim that smaller DP noise parameters might suffice to achieve IND-CPA^D-security for schemes supporting more accurate (dynamic, key dependent) estimates of ciphertext noise during decryption. Perhaps surprisingly, we show that this claim is false, and that DP mechanisms with noise parameters tailored to the error present in a given ciphertext, rather than worst-case error, are vulnerable to IND-CPA^D attacks.
Simpler Statistically Sender Private Oblivious Transfer from Ideals of Cyclotomic Integers 📺
Daniele Micciancio Jessica Sorrell
We present a two-message oblivious transfer protocol achieving statistical sender privacy and computational receiver privacy based on the RLWE assumption for cyclotomic number fields. This work improves upon prior lattice-based statistically sender-private oblivious transfer protocols by reducing the total communication between parties by a factor O(nlogq) for transfer of length O(n) messages. Prior work of Brakerski and Dottling uses transference theorems to show that either a lattice or its dual must have short vectors, the existence of which guarantees lossy encryption for encodings with respect to that lattice, and therefore statistical sender privacy. In the case of ideal lattices from embeddings of cyclotomic integers, the existence of one short vector implies the existence of many, and therefore encryption with respect to either a lattice or its dual is guaranteed to ``lose" more information about the message than can be ensured in the case of general lattices. This additional structure of ideals of cyclotomic integers allows for efficiency improvements beyond those that are typical when moving from the generic to ideal lattice setting, resulting in smaller message sizes for sender and receiver, as well as a protocol that is simpler to describe and analyze.


Baiyu Li (1)
Daniele Micciancio (2)
David Schultz (1)