International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Andrea Caforio

Publications

Year
Venue
Title
2024
TCHES
Gleeok: A Family of Low-Latency PRFs and its Applications to Authenticated Encryption
In this paper, we propose a new family of low-latency pseudorandom functions (PRFs), dubbed Gleeok.Gleeok utilizes three 128-bit branches to achieve a 256-bit key size while maintaining low latency. The first two branches are specifically designed to defend against statistical attacks, especially for differential attacks, while the third branch provides resilience against algebraic attacks. This unique design enables Gleeok to offer ultralow latency while supporting 256-bit keys, setting it apart from existing ciphers dedicated to low-latency requirements. In addition, we propose wide-block variants having three 256-bit branches. We also present an application of Gleeok to short-input authenticated encryption which is crucial for memory encryption and various realtime communication applications. Furthermore, we present comprehensive hardware implementation results that establish the capabilities of Gleeok and demonstrate its competitiveness against related schemes in the literature. In particular, Gleeok achieves a minimum latency of roughly 360 ps with the NanGate 15 nm cell library and is thus on par with related low-latency schemes that only feature 128-bit keys while maintaining minimal overhead when equipped in an authenticated mode of operation.
2021
TOSC
Atom: A Stream Cipher with Double Key Filter 📺
It has been common knowledge that for a stream cipher to be secure against generic TMD tradeoff attacks, the size of its internal state in bits needs to be at least twice the size of the length of its secret key. In FSE 2015, Armknecht and Mikhalev however proposed the stream cipher Sprout with a Grain-like architecture, whose internal state was equal in size with its secret key and yet resistant against TMD attacks. Although Sprout had other weaknesses, it germinated a sequence of stream cipher designs like Lizard and Plantlet with short internal states. Both these designs have had cryptanalytic results reported against them. In this paper, we propose the stream cipher Atom that has an internal state of 159 bits and offers a security of 128 bits. Atom uses two key filters simultaneously to thwart certain cryptanalytic attacks that have been recently reported against keystream generators. In addition, we found that our design is one of the smallest stream ciphers that offers this security level, and we prove in this paper that Atom resists all the attacks that have been proposed against stream ciphers so far in literature. On the face of it, Atom also builds on the basic structure of the Grain family of stream ciphers. However, we try to prove that by including the additional key filter in the architecture of Atom we can make it immune to all cryptanalytic advances proposed against stream ciphers in recent cryptographic literature.
2021
PKC
Beyond Security and Efficiency: On-Demand Ratcheting with Security Awareness 📺
Secure asynchronous two-party communication applies ratcheting to strengthen privacy, in the presence of internal state exposures. Security with ratcheting is provided in two forms: forward security and post-compromise security. There have been several such secure protocols proposed in the last few years. However, they come with a high cost. In this paper, we propose two generic constructions with favorable properties. Concretely, our first construction achieves security awareness. It allows users to detect non-persistent active attacks, to determine which messages are not safe given a potential leakage pattern, and to acknowledge for deliveries. In our second construction, we define a hybrid system formed by combining two protocols: typically, a weakly secure "light" protocol and a strongly secure "heavy" protocol. The design goals of our hybrid construction are, first, to let the sender decide which one to use in order to obtain an efficient protocol with ratchet on demand; and second, to restore the communication between honest participants in the case of a message loss or an active attack. We can apply our generic constructions to any existing protocol.
2021
TOSC
Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives 📺
Energy efficiency is critical in battery-driven devices, and designing energyoptimal symmetric-key ciphers is one of the goals for the use of ciphers in such environments. In the paper by Banik et al. (IACR ToSC 2018), stream ciphers were identified as ideal candidates for low-energy solutions. One of the main conclusions of this paper was that Trivium, when implemented in an unrolled fashion, was by far the most energy-efficient way of encrypting larger quantity of data. In fact, it was shown that as soon as the number of databits to be encrypted exceeded 320 bits, Trivium consumed the least amount of energy on STM 90 nm ASIC circuits and outperformed the Midori family of block ciphers even in the least energy hungry ECB mode (Midori was designed specifically for energy efficiency).In this work, we devise the first heuristic energy model in the realm of stream ciphers that links the underlying algebraic topology of the state update function to the consumptive behaviour. The model is then used to derive a metric that exhibits a heavy negative correlation with the energy consumption of a broad range of stream cipher architectures, i.e., the families of Trivium-like, Grain-like and Subterranean-like constructions. We demonstrate that this correlation is especially pronounced for Trivium-like ciphers which leads us to establish a link between the energy consumption and the security guarantees that makes it possible to find several alternative energy-optimal versions of Trivium that meet the requirements but consume less energy. We present two such designs Trivium-LE(F) and Trivium-LE(S) that consume around 15% and 25% less energy respectively making them the to date most energy-efficient encryption primitives. They inherit the same security level as Trivium, i.e., 80-bit security. We further present Triad-LE as an energy-efficient variant satisfying a higher security level. The simplicity and wide applicability of our model has direct consequences for the conception of future hardware-targeted stream ciphers as for the first time it is possible to optimize for energy during the design phase. Moreover, we extend the reach of our model beyond plain encryption primitives and propose a novel energy-efficient message authentication code Trivium-LE-MAC.
2020
TCHES
The Area-Latency Symbiosis: Towards Improved Serial Encryption Circuits 📺
Fatih Balli Andrea Caforio Subhadeep Banik
The bit-sliding paper of Jean et al. (CHES 2017) showed that the smallest-size circuit for SPN based block ciphers such as AES, SKINNY and PRESENT can be achieved via bit-serial implementations. Their technique decreases the bit size of the datapath and naturally leads to a significant loss in latency (as well as the maximum throughput). Their designs complete a single round of the encryption in 168 (resp. 68) clock cycles for 128 (resp. 64) bit blocks. A follow-up work by Banik et al. (FSE 2020) introduced the swap-and-rotate technique that both eliminates this loss in latency and achieves even smaller footprints.In this paper, we extend these results on bit-serial implementations all the way to four authenticated encryption schemes from NIST LWC. Our first focus is to decrease latency and improve throughput with the use of the swap-and-rotate technique. Our block cipher implementations have the most efficient round operations in the sense that a round function of an n-bit block cipher is computed in exactly n clock cycles. This leads to implementations that are similar in size to the state of the art, but have much lower latency (savings up to 20 percent). We then extend our technique to 4- and 8-bit implementations. Although these results are promising, block ciphers themselves are not end-user primitives, as they need to be used in conjunction with a mode of operation. Hence, in the second part of the paper, we use our serial block ciphers to bootstrap four active NIST authenticated encryption candidates: SUNDAE-GIFT, Romulus, SAEAES and SKINNY-AEAD. In the wake of this effort, we provide the smallest block-cipher-based authenticated encryption circuits known in the literature so far.