International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Ghada Almashaqbeh

Publications and invited talks

Year
Venue
Title
2025
ASIACRYPT
Adversary Resilient Learned Bloom Filters
Ghada Almashaqbeh Allison Bishop Hayder Tirmazi
A learned Bloom filter (LBF) combines a classical Bloom filter (CBF) with a learning model to reduce the amount of memory needed to represent a given set while achieving a target false positive rate (FPR). Provable security against adaptive adversaries that advertently attempt to increase FPR has been studied for CBFs, but not for LBFs. In this paper, we close this gap and show how to achieve adaptive security for LBFs. In particular, we define several adaptive security notions capturing varying degrees of adversarial control, including full and partial adaptivity, in addition to LBF extensions of existing adversarial models for CBFs, including the Always-Bet and Bet-or-Pass notions. We propose two secure LBF constructions, PRP-LBF and Cuckoo-LBF, and formally prove their security under these models assuming the existence of one-way functions. Based on our analysis and use case evaluations, our constructions achieve strong security guarantees while maintaining competitive FPR and memory overhead.
2022
EUROCRYPT
Unclonable Polymers and Their Cryptographic Applications 📺
We propose a mechanism for generating and manipulating protein polymers to obtain a new type of *consumable storage* that exhibits intriguing cryptographic "self-destruct" properties, assuming the hardness of certain polymer-sequencing problems. To demonstrate the cryptographic potential of this technology, we first develop a formalism that captures (in a minimalistic way) the functionality and security properties provided by the technology. Next, using this technology, we construct and prove security of two cryptographic applications that are currently obtainable only via trusted hardware that implements logical circuitry (either classical or quantum). The first application is a password-controlled *secure vault* where the stored data is irrecoverably erased once a threshold of unsuccessful access attempts is reached. The second is (a somewhat relaxed version of) *one time programs*, namely a device that allows evaluating a secret function only a limited number of times before self-destructing, where each evaluation is made on a fresh user-chosen input. Finally, while our constructions, modeling, and analysis are designed to capture the proposed polymer-based technology, they are sufficiently general to be of potential independent interest.

Service

Crypto 2023 Program committee
PKC 2023 Program committee
Asiacrypt 2022 Program committee
Crypto 2021 Program committee