International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Georgios Fotiadis

Publications

Year
Venue
Title
2022
TCHES
Highly Vectorized SIKE for AVX-512
It is generally accepted that a large-scale quantum computer would be capable to break any public-key cryptosystem used today, thereby posing a serious threat to the security of the Internet’s public-key infrastructure. The US National Institute of Standards and Technology (NIST) addresses this threat with an open process for the standardization of quantum-safe key establishment and signature schemes, which is now in the final phase of the evaluation of candidates. SIKE (an abbreviation of Supersingular Isogeny Key Encapsulation) is one of the alternate candidates under evaluation and distinguishes itself from other candidates due to relatively short key lengths and relatively high computing costs. In this paper, we analyze how the latest generation of Intel’s Advanced Vector Extensions (AVX), in particular AVX-512IFMA, can be used to minimize the latency (resp. maximize the throughput) of the SIKE key encapsulation mechanism when executed on Ice Lake CPUs based on the Sunny Cove microarchitecture. We present various techniques to parallelize and speed up the base/extension field arithmetic, point arithmetic, and isogeny computations performed by SIKE. All these parallel processing techniques are combined in AVXSIKE, a highly optimized implementation of SIKE using Intel AVX-512IFMA instructions. Our experiments indicate that AVXSIKE instantiated with the SIKEp503 parameter set is approximately 1.5 times faster than the to-date best AVX-512IFMA-based SIKE software from the literature. When executed on an Intel Core i3-1005G1 CPU, AVXSIKE outperforms the x64 assembly implementation of SIKE contained in Microsoft’s SIDHv3.4 library by a factor of about 2.5 for key generation and decapsulation, while the encapsulation is even 3.2 times faster.
2022
TCHES
Highly Vectorized SIKE for AVX-512
It is generally accepted that a large-scale quantum computer would be capable to break any public-key cryptosystem used today, thereby posing a serious threat to the security of the Internet’s public-key infrastructure. The US National Institute of Standards and Technology (NIST) addresses this threat with an open process for the standardization of quantum-safe key establishment and signature schemes, which is now in the final phase of the evaluation of candidates. SIKE (an abbreviation of Supersingular Isogeny Key Encapsulation) is one of the alternate candidates under evaluation and distinguishes itself from other candidates due to relatively short key lengths and relatively high computing costs. In this paper, we analyze how the latest generation of Intel’s Advanced Vector Extensions (AVX), in particular AVX-512IFMA, can be used to minimize the latency (resp. maximize the hroughput) of the SIKE key encapsulation mechanism when executed on Ice Lake CPUs based on the Sunny Cove microarchitecture. We present various techniques to parallelize and speed up the base/extension field arithmetic, point arithmetic, and isogeny computations performed by SIKE. All these parallel processing techniques are combined in AvxSike, a highly optimized implementation of SIKE using Intel AVX-512IFMA instructions. Our experiments indicate that AvxSike instantiated with the SIKEp503 parameter set is approximately 1.5 times faster than the to-date best AVX-512IFMA-based SIKE software from the literature. When executed on an Intel Core i3-1005G1 CPU, AvxSike outperforms the x64 assembly implementation of SIKE contained in Microsoft’s SIDHv3.4 library by a factor of about 2.5 for key generation and decapsulation, while the encapsulation is even 3.2 times faster.
2021
TCHES
Batching CSIDH Group Actions using AVX-512 📺
Commutative Supersingular Isogeny Diffie-Hellman (or CSIDH for short) is a recently-proposed post-quantum key establishment scheme that belongs to the family of isogeny-based cryptosystems. The CSIDH protocol is based on the action of an ideal class group on a set of supersingular elliptic curves and comes with some very attractive features, e.g. the ability to serve as a “drop-in” replacement for the standard elliptic curve Diffie-Hellman protocol. Unfortunately, the execution time of CSIDH is prohibitively high for many real-world applications, mainly due to the enormous computational cost of the underlying group action. Consequently, there is a strong demand for optimizations that increase the efficiency of the class group action evaluation, which is not only important for CSIDH, but also for related cryptosystems like the signature schemes CSI-FiSh and SeaSign. In this paper, we explore how the AVX-512 vector extensions (incl. AVX-512F and AVX-512IFMA) can be utilized to optimize constant-time evaluation of the CSIDH-512 class group action with the goal of, respectively, maximizing throughput and minimizing latency. We introduce different approaches for batching group actions and computing them in SIMD fashion on modern Intel processors. In particular, we present a hybrid batching technique that, when combined with optimized (8 × 1)-way prime-field arithmetic, increases the throughput by a factor of 3.64 compared to a state-of-the-art (non-vectorized) x64 implementation. On the other hand, vectorization in a 2-way fashion aimed to reduce latency makes our AVX-512 implementation of the group action evaluation about 1.54 times faster than the state-of-the-art. To the best of our knowledge, this paper is the first to demonstrate the high potential of using vector instructions to increase the throughput (resp. decrease the latency) of constant-time CSIDH.