CryptoDB
Zeyu Liu
Publications
Year
Venue
Title
2025
EUROCRYPT
Snake-eye Resistant PKE from LWE for Oblivious Message Retrieval and Robust Encryption
Abstract
Oblivious message retrieval (OMR) allows resource-limited recipients to outsource the message retrieval process without revealing which messages are pertinent to which recipient. Its realizations in recent works leave an open problem: can an OMR scheme be both practical and provably secure against spamming attacks by malicious senders (i.e., DoS-resistant) under standard assumptions?
In this paper, we present DoS-PerfOMR: a provably DoS-resistant OMR construction that is 12x faster than OMRp2 (a conjectured DoS-resistant OMR construction in prior works), and (almost) matches the performance of the state-of-the-art OMR scheme that is not DoS-resistant (proven by the attacks we show).
To achieve this, we analyze the snake-eye resistance property for general PKE schemes, i.e., whether it is hard to encrypt an identical message under two public keys. We construct a new lattice-based PKE scheme: LWEmongrass, that is provably snake-eye resistant and has better efficiency than the PVW scheme underlying OMRp2. We also show that natural candidates (e.g., RingLWE PKE) are not snake-eye resistant.
Furthermore, we show that a snake-eye resistant PKE scheme implies a robust PKE scheme, thus introducing the first robust lattice-based PKE scheme without relying on the KEM-DEM paradigm, avoiding its inherent inefficiencies.
Of independent interest, we introduce two variants of LWE with side information, as components towards proving the properties of LWEmongrass, and reduce standard LWE to them for the parameters of interest.
2024
ASIACRYPT
Relaxed Functional Bootstrapping: A New Perspective on BGV/BFV Bootstrapping
Abstract
BGV and BFV are among the most widely used fully homomorphic encryption (FHE) schemes, supporting evaluations over a finite field. To evaluate a circuit with arbitrary depth, bootstrapping is needed. However, despite the recent progress, bootstrapping of BGV/BFV still remains relatively impractical, compared to other FHE schemes.
In this work, we inspect the BGV/BFV bootstrapping procedure from a different angle. We provide a generalized bootstrapping definition that relaxes the correctness requirement of regular bootstrapping, allowing constructions that support only certain kinds of circuits with arbitrary depth. In addition, our definition captures a form of functional bootstrapping. In other words, the output encrypts a function evaluation of the input instead of the input itself.
Under this new definition, we provide a bootstrapping procedure supporting different types of functions. Our construction is 1-2 orders of magnitude faster than the state-of-the-art BGV/BFV bootstrapping algorithms, depending on the evaluated function.
Of independent interest, we show that our technique can be used to improve the batched FHEW/TFHE bootstrapping construction introduced by Liu and Wang (Asiacrypt 2023). Our optimization provides a speed-up of 6x in latency and 3x in throughput for binary gate bootstrapping and a plaintext-space-dependent speed-up for functional bootstrapping with plaintext space smaller than Z_{512}.
2023
CRYPTO
Orbweaver: Succinct Linear Functional Commitments from Lattices
Abstract
We present Orbweaver, the first plausibly post-quantum functional commitment to achieve quasilinear prover time together with O(log(n)) proof size and O(log(n)loglog(n)) verifier time. Orbweaver enables evaluation of linear maps on committed vectors over cyclotomic rings or the integers. It is extractable, preprocessing, non-interactive, structure-preserving, amenable to recursive composition, and supports logarithmic public proof aggregation. The security of our scheme is based on the k-R-ISIS assumption (and its knowledge counterpart), whereby we require a trusted setup to generate a universal structured reference string. We additionally use Orbweaver to construct a succinct polynomial commitment for integer polynomials.
2023
ASIACRYPT
Amortized Functional Bootstrapping in less than 7ms, with ~O(1) polynomial multiplications
Abstract
Amortized bootstrapping offers a way to refresh multiple ciphertexts of a fully homomorphic encryption scheme in parallel more efficiently than refreshing a single ciphertext at a time. Micciancio and Sorrell (ICALP 2018) first proposed this technique to bootstrap n LWE ciphertexts at a time, reducing the total cost from \tilde{O}(n^2) to \tilde{O}(3^\epsilon n^{1+1/\epsilon}) for arbitrary \epsilon > 0. Several recent follow-up works have further improved the asymptotic cost. Despite these amazing progresses in theoretical efficiency, none of these works have demonstrated the practicality of batched LWE ciphertext bootstrapping. Moreover, most of these works only support limited functional bootstrapping, i.e., they only allow evaluating a specific type of function when bootstrapping.
In this work, we propose a construction that is not only asymptotically efficient (requiring only \tilde{O}(n) polynomial multiplications for bootstrapping of n LWE ciphertexts) but also concretely efficient. We have our scheme implemented as a C++ library and show that it takes <5ms per LWE ciphertext to bootstrap for a binary gate, which is an order of magnitude faster than the state-of-the-art C++ implementation on LWE ciphertext bootstrapping in OpenFHE. Furthermore, our construction supports batched arbitrary functional bootstrapping. For a 9-bit messages space, our scheme takes ~6.7ms per LWE ciphertext to evaluate an arbitrary function with bootstrapping, which is about two to three magnitudes faster than all the existing schemes that achieve a similar functionality and message space.
2022
CRYPTO
Oblivious Message Retrieval
📺
Abstract
Anonymous message delivery systems, such as private messaging services and privacy-preserving payment systems, need a mechanism for recipients to retrieve the messages addressed to them, without leaking metadata or letting their messages be linked. Recipients could download all posted messages and scan for those addressed to them, but communication and computation costs are excessive at scale.
We show how untrusted servers can detect messages on behalf of recipients, and summarize these into a compact encrypted digest that recipients can easily decrypt. These servers operate obliviously and do not learn anything about which messages are addressed to which recipients. Privacy, soundness, and completeness hold even if everyone but the recipient is adversarial and colluding (unlike in prior schemes).
Our starting point is an asymptotically-efficient approach, using Fully Homomorphic Encryption and homomorphically-encoded Sparse Random Linear Codes. We then address the concrete performance using bespoke tailoring of lattice-based cryptographic components, alongside various algebraic and algorithmic optimizations. This reduces the digest size to a few bits per message scanned. Concretely, the servers' cost is ~$1 per million messages scanned, and the resulting digests can be decoded by recipients in ~20ms. Our schemes can thus practically attain the strongest form of receiver privacy for current applications such as privacy-preserving cryptocurrencies.
2022
RWC
Oblivious Message Retrieval
Abstract
Anonymous message delivery systems, such as private messaging services and privacy-preserving payment systems, need a mechanism for recipient to retrieve the messages addressed to them, without leaking metadata and or letting their messages be linked. Recipients could download all posted messages and scan for those addressed to them, but communication and computation costs are excessive at scale.
We show how untrusted servers can detect messages on behalf of recipients, and summarize these into a compact encrypted digest that recipients can easily decrypt. Servers operate obliviously, and do not learn anything about which messages are addressed to which recipients. Privacy, soundness, and completeness hold even if everyone but the recipient is adversarial and colluding (unlike in prior schemes), and are post-quantum secure.
Our starting point is an asymptotically-efficient scheme using Fully Homomorphic Encryption and batch-code-like techniques. We then address concrete performance with a bespoke tailoring of lattice-based cryptographic components, alongside various algebraic and algorithmic optimizations. This reduces the digest size to a few bits per message scanned, with a total receiver computation of a under 20ms. The detector's cost is a couple of USD per million messages scanned. Our schemes can thus practically attain the strongest form of receiver privacy for current applications such as privacy-preserving cryptocurrencies.
Coauthors
- Ben Fisch (1)
- Zeyu Liu (6)
- Katerina Sotiraki (1)
- Eran Tromer (3)
- Psi Vesely (1)
- Yunhao Wang (3)