CryptoDB
Andreea Alexandru
Publications
Year
Venue
Title
2025
CRYPTO
General Functional Bootstrapping using CKKS
Abstract
Ducas-Micciancio (DM) and Chilotti-Gama-Georgieva-Izabachene (CGGI) cryptosystems provide a general privacy-preserving computation capability. These fully homomorphic encryption (FHE) cryptosystems can evaluate an arbitrary function expressed as a general look-up table (LUT) via the method of functional bootstrapping. The main limitation of DM/CGGI functional bootstrapping is its efficiency because this procedure has to bootstrap every encrypted number separately. A different bootstrapping approach, based on the Cheon-Kim-Kim-Song (CKKS) FHE scheme, can achieve much smaller amortized time due to its ability to bootstrap many thousands of numbers at once. However, CKKS does not currently provide a functional bootstrapping capability that can evaluate a general LUT. An open research question is whether such capability can be efficiently constructed. We give a positive answer to this question by proposing and implementing a general functional bootstrapping method based on CKKS-style bootstrapping. We devise a theoretical toolkit for evaluating an arbitrary function using the theory of trigonometric Hermite interpolations, which provides control over noise reduction during functional bootstrapping. Our experimental results for 8-bit LUT evaluation show that the proposed method achieves the amortized time of 0.72 milliseconds, which is three orders of magnitude faster than the DM/CGGI approach and 6.8x faster than (a more restrictive) amortized functional bootstrapping method based on the Brakerski/Fan-Vercauteren (BFV) FHE scheme.
2022
ASIACRYPT
State Machine Replication under Changing Network Conditions
📺
Abstract
Protocols for state machine replication (SMR) are typically designed for synchronous or asynchronous networks, with a lower corruption threshold in the latter case. Recent network-agnostic protocols are secure when run in either a synchronous or an asynchronous network. We propose two new constructions of network-agnostic SMR protocols that improve on existing protocols in terms of either the adversarial model or communication complexity:
1. an adaptively secure protocol with optimal corruption thresholds and quadratic amortized communication complexity per transaction;
2. a statically secure protocol with near-optimal corruption thresholds and linear amortized communication complexity per transaction.
We further explore SMR protocols run in a network that may change between synchronous and asynchronous arbitrarily often; parties can be uncorrupted (as in the proactive model), and the protocol should remain secure as long as the appropriate corruption thresholds are maintained. We show that purely asynchronous proactive secret sharing is impossible without some form of synchronization between the parties, ruling out a natural approach to proactively secure network-agnostic SMR protocols. Motivated by this negative result, we consider a model where the adversary is limited in the total number of parties it can corrupt over the duration of the protocol and show, in this setting, that our SMR protocols remain secure even under arbitrarily changing network conditions.
Coauthors
- Andreea Alexandru (2)
- Erica Blum (1)
- Jonathan Katz (1)
- Andrey Kim (1)
- Julian Loss (1)
- Yuriy Polyakov (1)