International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Victor Dyseryn

Publications

Year
Venue
Title
2024
ASIACRYPT
MinRank Gabidulin encryption scheme on matrix codes
The McEliece scheme is a generic frame which allows to use any error correcting code of which there exists an efficient decoding algorithm to design an encryption scheme by hiding the generator matrix code. Similarly, the Niederreiter frame is the dual version of the McEliece scheme, and achieves smaller ciphertexts. In the present paper, we propose a generalization of the McEliece frame and the Niederreiter frame to matrix codes and the MinRank problem, that we apply to Gabidulin matrix codes (Gabidulin rank codes considered as matrix codes). The masking we consider consists in starting from a rank code C, to consider a matrix version of C and to concatenate a certain number of rows and columns to the matrix codes version of the rank code C and then apply to an isometry for matric codes, i.e. right and left multiplications by fixed random matrices. The security of the schemes relies on the MinRank problem to decrypt a ciphertext, and the structural security of the scheme relies on a new problem EGMC-Indistinguishability problem that we introduce and that we study in detail. The main structural attack that we propose consists in trying to recover the masked linearity over the extension field which is lost during the masking process. Overall, starting from Gabidulin codes we obtain a very appealing tradeoff between the size of ciphertext and the size of the public key. For 128b of security we propose parameters ranging from ciphertext of size 65 B (and public keys of size 98 kB) to ciphertext of size 138B (and public key of size 41 kB). Our new approach permits to achieve better trade-off between ciphertexts and public key than the classical McEliece scheme. Our new approach permits to obtain an alternative scheme to the classic McEliece scheme, to obtain very small ciphertexts, with moreover smaller public keys than in the classic McEliece scheme. For 256 bits of security, we can obtain ciphertext as low as 119B, or public key as low as 87kB.
2023
CRYPTO
Analysis of the security of the PSSI problem and cryptanalysis of the Durandal signature scheme
We present a new attack against the PSSI problem, one of the three problems at the root of security of Durandal, an efficient rank metric code-based signature scheme with a public key size of 15 kB and a signature size of 4 kB, presented at EUROCRYPT'19. Our attack recovers the private key using a leakage of information coming from several signatures produced with the same key. Our approach is to combine pairs of signatures and perform Cramer-like formulas in order to build subspaces containing a secret element. We break all existing parameters of Durandal: the two published sets of parameters claiming a security of 128 bits are broken in respectively $2^{66}$ and $2^{73}$ elementary bit operations, and the number of signatures required to finalize the attack is 1,792 and 4,096 respectively. We implemented our attack and ran experiments that demonstrated its success with smaller parameters.