International Association for Cryptologic Research

International Association
for Cryptologic Research


Markus Raiber


Universally Composable Auditable Surveillance
User privacy is becoming increasingly important in our digital society. Yet, many applications face legal requirements or regulations that prohibit unconditional anonymity guarantees, e.g., in electronic payments where surveillance is mandated to investigate suspected crimes. As a result, many systems have no effective privacy protections at all, or have backdoors, e.g., stored at the operator side of the system, that can be used by authorities to disclose a user’s private information (e.g., lawful interception). The problem with such backdoors is that they also enable silent mass surveillance within the system. To prevent such misuse, various approaches have been suggested which limit possible abuse or ensure it can be detected. Many works consider auditability of surveillance actions but do not enforce that traces are left when backdoors are retrieved. A notable exception which offers retrospective and silent surveillance is the recent work on misuse-resistant surveillance by Green et al. (EUROCRYPT’21). However, their approach relies on extractable witness encryption, which is a very strong primitive with no known efficient and secure implementations. In this work, we develop a building block for auditable surveillance. In our protocol, backdoors or escrow secrets of users are protected in multiple ways: (1) Backdoors are short-term and user-specific; (2) they are shared between trustworthy parties to avoid a single point of failure; and (3) backdoor access is given conditionally. Moreover (4) there are audit trails and public statistics for every (granted) backdoor request; and (5) surveillance remains silent, i.e., users do not know they are surveilled. Concretely, we present an abstract UC-functionality which can be used to augment applications with auditable surveillance capabilities. Our realization makes use of threshold encryption to protect user secrets, and is concretely built in a blockchain context with committee-based YOSO MPC. As a consequence, the committee can verify that the conditions for backdoor access are given, e.g., that law enforcement is in possession of a valid surveillance warrant (via a zero-knowledge proof). Moreover, access leaves an audit trail on the ledger, which allows an auditor to retrospectively examine surveillance decisions. As a toy example, we present an Auditably Sender-Traceable Encryption scheme, a PKE scheme where the sender can be deanonymized by law enforcement. We observe and solve problems posed by retrospective surveillance via a special non-interactive non-committing encryption scheme which allows zero-knowledge proofs over message, sender identity and (escrow) secrets.
Composable Long-Term Security with Rewinding
Long-term security, a variant of Universally Composable (UC) security introduced by Müller-Quade and Unruh (TCC ’07, JoC ’10), allows to analyze the security of protocols in a setting where all hardness assumptions no longer hold after the protocol execution has finished. Such a strict notion is highly desirable when properties such as input privacy need to be guaranteed for a long time, e.g. with zero-knowledge proofs for secure electronic voting. Strong impossibility results rule out so-called long-term-revealing setups, e.g. a common reference string (CRS), to achieve long-term security, with known constructions for long-term security requiring hardware assumptions, e.g. signature cards. We circumvent these impossibility results with new techniques, enabling rewinding-based simulation in a way that universal composability is achieved. This allows us to construct a long-term-secure composable commitment scheme in the CRS-hybrid model, which is provably impossible in the notion of Müller-Quade and Unruh. We base our construction on a statistically hiding commitment scheme in the CRS-hybrid model with CCA-like properties. To provide a CCA oracle, we cannot rely on super-polynomial extraction techniques and instead extract the value committed to via rewinding. To this end, we incorporate rewinding-based commitment extraction into the UC framework via a helper in analogy to Canetti, Lin and Pass (FOCS 2010), allowing both adversary and environment to extract statistically hiding commitments. Our new framework provides the first setting in which a commitment scheme that is both statistically hiding and universally composable can be constructed from standard polynomial-time hardness assumptions and a CRS only. We also prove that our CCA oracle is k-robust extractable. This asserts that extraction is possible without rewinding a concurrently executed k-round protocol. Consequently any k-round (standard) UC-secure protocol remains secure in the presence of our helper. Finally, we prove that building long-term-secure oblivious transfer (and thus general two-party computations) from long-term-revealing setups remains impossible in our setting. Still, our long-term-secure commitment scheme suffices for natural applications, such as long-term secure and composable (commit-and-prove) zero-knowledge arguments of knowledge.