International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Aurélien Boeuf

Publications

Year
Venue
Title
2024
CRYPTO
The Algebraic Freelunch: Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives
In this paper, we present a new type of algebraic attack that applies to many recent arithmetization-oriented families of permutations, such as those used in Griffin, Anemoi, ArionHash, and XHash8, whose security relies on the hardness of the constrained-input constrained-output (CICO) problem. We introduce the FreeLunch approach: the monomial ordering is chosen so that the natural polynomial system encoding the CICO problem already is a Gröbner basis. In addition, we present a new dedicated resolution algorithm for FreeLunch systems, of complexity lower than applicable state-of-the-art FGLM algorithms. We show that the FreeLunch approach challenges the security of full-round instances of Anemoi, Arion and Griffin. We confirm these theoretical results with experimental results on those three permutations. In particular, using the FreeLunch attack combined with a new technique to bypass 3 rounds of Griffin, we recover a CICO solution for 7 out of 10 rounds of Griffin in less than four hours on one core of AMD EPYC 7352 (2.3GHz).
2023
TOSC
Propagation of Subspaces in Primitives with Monomial Sboxes: Applications to Rescue and Variants of the AES
Aurélien Boeuf Anne Canteaut Léo Perrin
Motivated by progress in the field of zero-knowledge proofs, so-called Arithmetization-Oriented (AO) symmetric primitives have started to appear in the literature, such as MiMC, Poseidon or Rescue. Due to the design constraints implied by this setting, these algorithms are defined using simple operations over large (possibly prime) fields. In particular, many rely on simple low-degree monomials for their non-linear layers, essentially using x ↦ x3 as an S-box.In this paper, we show that the structure of the material injected in each round (be it subkeys in a block cipher or round constants in a public permutation) could allow a specific pattern, whereby a well-defined affine space is mapped to another by the round function, and then to another, etc. Such chains of one-dimensional subspaces always exist over 2 rounds, and they can be extended to an arbitrary number of rounds, for any linear layer, provided that the round-constants are well chosen.As a consequence, for several ciphers like Rescue, or a variant of AES with a monomial Sbox, there exist some round-key sequences for which the cipher has an abnormally high differential uniformity, exceeding the size of the Sbox alphabet.Well-known security arguments, in particular based on the wide-trail strategy, have been reused in the AO setting by many designers. Unfortunately, our results show that such a traditional study may not be sufficient to guarantee security. To illustrate this, we present two new primitives (the tweakable block cipher Snare and the permutation-based hash function Stir) that are built using state-of-the-art security arguments, but which are actually deeply flawed. Indeed, the key schedule of Snare ensures the presence of a subspace chain that significantly simplifies an algebraic attack against it, and the round constants of Stir force the presence of a subspace chain aligned with the rate and capacity of the permutation. This in turns implies the existence of many easy-to-find solutions to the so-called CICO problem.