CryptoDB
Benjamin E. Diamond
Publications
Year
Venue
Title
2025
CIC
Proximity Gaps in Interleaved Codes
Abstract
<p>A linear error-correcting code exhibits proximity gaps if each affine line of words either consists entirely of words which are close to the code or else contains almost no such words. In this short note, we prove that for each linear code which exhibits proximity gaps within the unique decoding radius, that code's interleaved code also does. Combining our result with a recent argument of Angeris, Evans and Roh ('24), we extend those authors' sharpening of the tensor-based proximity gap of Diamond and Posen (Commun. Cryptol. '24) up to the unique decoding radius, at least in the Reed–Solomon setting. </p>
2024
CIC
Proximity Testing with Logarithmic Randomness
Abstract
<p>A fundamental result dating to Ligero (Des. Codes Cryptogr. '23) establishes that each fixed linear block code exhibits proximity gaps with respect to the collection of affine subspaces, in the sense that each given subspace either resides entirely close to the code, or else contains only a small portion which resides close to the code. In particular, any given subspace's failure to reside entirely close to the code is necessarily witnessed, with high probability, by a uniformly randomly sampled element of that subspace. We investigate a variant of this phenomenon in which the witness is not sampled uniformly from the subspace, but rather from a much smaller subset of it. We show that a logarithmic number of random field elements (in the dimension of the subspace) suffice to effect an analogous proximity test, with moreover only a logarithmic (multiplicative) loss in the possible prevalence of false witnesses. We discuss applications to recent noninteractive proofs based on linear codes, including Brakedown (CRYPTO '23). </p>
Coauthors
- Benjamin E. Diamond (2)
- Angus Gruen (1)
- Jim Posen (1)