International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Jaume Martí-Farré

Affiliation: Universitat Politecnica de Catalunya

Publications

Year
Venue
Title
2012
JOFC
Ideal Multipartite Secret Sharing Schemes
Oriol Farràs Jaume Martí-Farré Carles Padró
Multipartite secret sharing schemes are those having a multipartite access structure, in which the set of participants is divided into several parts and all participants in the same part play an equivalent role. In this work, the characterization of ideal multipartite access structures is studied with all generality. Our results are based on the well-known connections between ideal secret sharing schemes and matroids and on the introduction of a new combinatorial tool in secret sharing, integer polymatroids .Our results can be summarized as follows. First, we present a characterization of multipartite matroid ports in terms of integer polymatroids. As a consequence of this characterization, a necessary condition for a multipartite access structure to be ideal is obtained. Second, we use representations of integer polymatroids by collections of vector subspaces to characterize the representable multipartite matroids. In this way we obtain a sufficient condition for a multipartite access structure to be ideal, and also a unified framework to study the open problems about the efficiency of the constructions of ideal multipartite secret sharing schemes. Finally, we apply our general results to obtain a complete characterization of ideal tripartite access structures, which was until now an open problem.
2007
EUROCRYPT
2007
TCC
2006
EPRINT
On Secret Sharing Schemes, Matroids and Polymatroids
Jaume Martí-Farré Carles Padró
The complexity of a secret sharing scheme is defined as the ratio between the maximum length of the shares and the length of the secret. The optimization of this parameter for general access structures is an important and very difficult open problem in secret sharing. We explore in this paper the connections of this open problem with matroids and polymatroids. Matroid ports were introduced by Lehman in 1964. A forbidden minor characterization of matroid ports was given by Seymour in 1976. These results are previous to the invention of secret sharing by Shamir in 1979. Important connections between ideal secret sharing schemes and matroids were discovered by Brickell and Davenport in 1991. Their results can be restated as follows: every ideal secret sharing scheme defines a matroid, and its access structure is a port of that matroid. In spite of this, the results by Lehman and Seymour and other subsequent results on matroid ports have not been noticed until now by the researchers interested in secret sharing. Lower bounds on the optimal complexity of access structures can be found by taking into account that the joint Shannon entropies of a set of random variables define a polymatroid. We introduce a new parameter, which is denoted by $\kappa$, to represent the best lower bound that can be obtained by this method. We prove that every bound that is obtained by this technique for an access structure applies to its dual structure as well. By using the aforementioned result by Seymour we obtain two new characterizations of matroid ports. The first one refers to the existence of a certain combinatorial configuration in the access structure, while the second one involves the values of the parameter $\kappa$ that is introduced in this paper. Both are related to bounds on the optimal complexity. As a consequence, we generalize the result by Brickell and Davenport by proving that, if the length of every share in a secret sharing scheme is less than 3/2 times the length of the secret, then its access structure is a matroid port. This generalizes and explains a phenomenon that was observed in several families of access structures. Finally, we present a construction of linear secret sharing schemes for the ports of the Vamos matroid and the non-Desargues matroid, which do not admit any ideal secret sharing scheme. We obtain in this way upper bounds on their optimal complexity. These new bounds are a contribution on the search of examples of access structures whose optimal complexity lies between 1 and 3/2.
2006
EPRINT
Ideal Multipartite Secret Sharing Schemes
Oriol Farràs Jaume Martí-Farré Carles Padró
Multipartite secret sharing schemes are those having a multipartite access structure, in which the set of participants is divided into several parts and all participants in the same part play an equivalent role. In this work, the characterization of ideal multipartite access structures is studied with all generality. Our results are based on the well-known connections between ideal secret sharing schemes and matroids and on the introduction of a new combinatorial tool in secret sharing, integer polymatroids. Our results can be summarized as follows. First, we present a characterization of multipartite matroid ports in terms of integer polymatroids. As a consequence of this characterization, a necessary condition for a multipartite access structure to be ideal is obtained. Second, we use representations of integer polymatroids by collections of vector subspaces to characterize the representable multipartite matroids. In this way we obtain a sufficient condition for a multipartite access structure to be ideal, and also a unified framework to study the open problems about the efficiency of the constructions of ideal multipartite secret sharing schemes. Finally, we apply our general results to obtain a complete characterization of ideal tripartite access structures, which was until now an open problem.
2005
CRYPTO
2004
EPRINT
On codes, matroids and secure multi-party computation from linear secret sharing schemes
Error correcting codes and matroids have been widely used in the study of ordinary secret sharing schemes. In this paper, we study the connections between codes, matroids, and a special class of secret sharing schemes: multiplicative linear secret sharing schemes. Such schemes are known to enable multi-party computation protocols secure against general (non-threshold) adversaries. Two open problems related to the complexity of multiplicative LSSSs are considered in this paper. The first one deals with strongly multiplicative LSSSs. As opposed to the case of multiplicative LSSSs, it is not known whether there is an efficient method to transform an LSSS into a strongly multiplicative LSSS for the same access structure with a polynomial increase of the complexity. We prove a property of strongly multiplicative LSSSs that could be useful in solving this problem. Namely, using a suitable generalization of the well-known Berlekamp-Welch decoder, we show that all strongly multiplicative LSSSs enable efficient reconstruction of a shared secret in the presence of malicious faults. The second one is to characterize the access structures of ideal multiplicative LSSSs. Specifically, we wonder whether all self-dual vector space access structures are in this situation. By the aforementioned connection, this in fact constitutes an open problem about matroid theory, since it can be re-stated in terms of representability of identically self-dual matroids by self-dual codes. We introduce a new concept, the flat-partition, that provides a useful classification of identically self-dual matroids. Uniform identically self-dual matroids, which are known to be representable by self-dual codes, form one of the classes. We prove that this property also holds for the family of matroids that, in a natural way, is the next class in the above classification: the identically self-dual bipartite matroids.
2002
EPRINT
Secret sharing schemes with three or four minimal qualified subsets
Jaume Martí-Farré Carles Padró
In this paper we study secret sharing schemes whose access structure has three or four minimal qualified subsets. The ideal case is completely characterized and for the non-ideal case we provide bounds on the optimal information rate.
2002
EPRINT
Secret sharing schemes on access structures with intersection number equal to one
Jaume Martí-Farré Carles Padró
The characterization of ideal access structures and the search for bounds on the optimal information rate are two important problems in secret sharing. These problems are studied in this paper for access structures with intersection number equal to one, that is, access structures such that there is at most one participant in the intersection of any two different minimal qualified subsets. The main result in this work is the complete characterization of the ideal access structures with intersection number equal to one. Besides, bounds on the optimal information rate are provided for the non-ideal case.