International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Kaixing Wang

Publications

Year
Venue
Title
2024
ASIACRYPT
NTRU-based Bootstrapping for MK-FHEs without using Overstretched Parameters
Recent attacks on NTRU lattices given by Ducas and van Woerden (ASIACRYPT 2021) showed that for moduli $q$ larger than the so-called fatigue point $n^{2.484+o(1)}$, the security of NTRU is noticeably less than that of (ring)-LWE. Unlike NTRU-based PKE with $q$ typically lying in the secure regime of NTRU lattices (i.e., $q<n^{2.484+o(1)}$), the security of existing NTRU-based multi-key FHEs (MK-FHEs) requiring $q=O(n^k)$ for $k$ keys could be significantly affected by those attacks. In this paper, we first propose a (matrix) NTRU-based MK-FHE for super-constant number $k$ of keys without using overstretched NTRU parameters. Our scheme is essentially a combination of two components following the two-layer framework of TFHE/FHEW: - a simple first-layer matrix NTRU-based encryption which naturally supports multi-key NAND operations with moduli $q=O(k\cdot n^{1.5})$ only linear in the number $k$ of keys; - and a crucial second-layer NTRU-based encryption which supports efficient hybrid product between a single-key ciphertext and a multi-key ciphertext for gate bootstrapping. Then, by replacing the first-layer with a more efficient LWE-based multi-key encryption, we obtain an improved MK-FHE scheme with better performance. We also employ a light key-switching technique to reduce the key-switching key size from previous $O(n^2)$ bits to $O(n)$ bits. A proof-of-concept implementation shows that our two MK-FHE schemes outperform the state-of-the-art TFHE-like MK-FHE schemes in both computation efficiency and bootstrapping key size. Concretely, for $k=8$ at the same 100-bit security level, our improved MK-FHE scheme can bootstrap a ciphertext in {0.54s} on a laptop and only has a bootstrapping key of size {13.89}MB, which are respectively 2.2 times faster and 7.4 times smaller than the MK-FHE scheme (which relies on a second-layer encryption from the ring-LWE assumption) due to Chen, Chillotti and Song (ASIACRYPT 2019).

Coauthors

Yi Deng (1)
Dengguo Feng (1)
Kaixing Wang (1)
Binwu Xiang (1)
Jiang Zhang (1)